• Title/Summary/Keyword: governing parameter

Search Result 460, Processing Time 0.025 seconds

Symmetrically loaded beam on a two-parameter tensionless foundation

  • Celep, Z.;Demir, F.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.555-574
    • /
    • 2007
  • Static response of an elastic beam on a two-parameter tensionless foundation is investigated by assuming that the beam is symmetrically subjected to a uniformly distributed load and concentrated edge loads. Governing equations of the problem are obtained and solved by pointing out that a concentrated edge foundation reaction in addition to a continuous foundation reaction along the beam axis in the case of complete contact and a discontinuity in the foundation reactions in the case of partial contact come into being as a direct result of the two-parameter foundation model. The numerical solution of the complete contact problem is straightforward. However, it is shown that the problem displays a highly non-linear character when the beam lifts off from the foundation. Numerical treatment of the governing equations is accomplished by adopting an iterative process to establish the contact length. Results are presented in figures to demonstrate the linear and non-linear behavior of the beam-foundation system for various values of the parameters of the problem comparatively.

A nonlocal strain gradient refined plate model for thermal vibration analysis of embedded graphene sheets via DQM

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.693-701
    • /
    • 2018
  • This paper develops a nonlocal strain gradient plate model for vibration analysis of graphene sheets under thermal environments. For more accurate analysis of graphene sheets, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. Graphene sheet is modeled via a two-variable shear deformation plate theory needless of shear correction factors. Governing equations of a nonlocal strain gradient graphene sheet on elastic substrate are derived via Hamilton's principle. Differential quadrature method (DQM) is implemented to solve the governing equations for different boundary conditions. Effects of different factors such as temperature rise, nonlocal parameter, length scale parameter, elastic foundation and aspect ratio on vibration characteristics a graphene sheets are studied. It is seen that vibration frequencies and critical buckling temperatures become larger and smaller with increase of strain gradient and nonlocal parameter, respectively.

Response of a completely free beam on a tensionless Pasternak foundation subjected to dynamic load

  • Celep, Z.;Guler, K.;Demir, F.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.61-77
    • /
    • 2011
  • Static and dynamic responses of a completely free elastic beam resting on a two-parameter tensionless Pasternak foundation are investigated by assuming that the beam is symmetrically subjected to a uniformly distributed load and concentrated load at its middle. Governing equations of the problem are obtained and solved by paying attention on the boundary conditions of the problem including the concentrated edge foundation reaction in the case of complete contact and lift-off condition of the beam ina two-parameter foundation. The nonlinear governing equation of the problem is evaluated numerically by adopting an iterative procedure. Numerical results are presented in figures to demonstrate the non-linear behavior of the beam-foundation system for various values of the parameters of the problem comparatively by considering the static and dynamic loading cases.

Strength prediction of steady laminar fluid with normal velocity distribution: A simplified truncation technique

  • Mohamed A. Khadimallah;Muzamal Hussain;Elimam Ali;Abdelouahed Tounsi
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.313-319
    • /
    • 2023
  • In this paper, the analytic solution has been found by using truncation approach. With the help of suitable substitution, different physical parameters are yielded in their non-dimensional form. The governing boundary layer partial differential equations are reduced to a set of ordinary ones by using appropriate similarity transformations. The velocity profile across the domain have also been taken into account. The effect normal velocity profiles buoyancy parameter, slip parameter, shrinking parameter, Casson fluid parameter on the heat profile. It is found that the normal velocity profiles rise with the buoyancy parameter and for the slip parameter. It is observed that the normal velocity profile decreases with the increase of shrinking parameter. The reverse behiour is found for the Casson fluid parameter. The results are numerically computed, analyzed and discussed. For the efficiency of present model, the results are compared with earlier investigations.

The Coupling of Conduction with Free Convection Flow Along a Vertical Flat Plate in Presence of Heat Generation

  • Taher, M.A.;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.7
    • /
    • pp.833-841
    • /
    • 2007
  • The aim of this paper is to analyze the conjugate problems of heat conduction in solid walls coupled with laminar free convection flow adjacent to a vertical flat plate under boundary layer approximation. Using the similarity transformations the governing boundary layer equations for momentum and energy are reduced to a system of partial differential equations and then solved numerically using Finite Difference Method(FDM) known as the Keller-box scheme. Computed solutions to the governing equations are obtained for a wide range of non-dimensional parameters that are present in this problem, namely the coupling parameter P. the Prandtl number Pr and the heat generation parameter Q. The variations of the local heat transfer rate as well as the interface temperature and the friction along the plate and typical velocity and temperature profiles in the boundary layer are shown graphically. Numerical solutions have been consider for the Prandtl number Pr=0.70

Vibration Characteristics of Immersed Column with Soft Base (연약지점을 갖는 유체에 잠긴 기둥의 진동 특성)

  • Oh Sang-Jin;Mo Jeong-Man
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.697-702
    • /
    • 2006
  • This paper deals with the free vibrations of immersed columns with soft base. The support condition of the column is represented by using a translational spring and a rotational spring. The eccentricity and rotatory inertia of the concentrated mass at the top are taken into account. In the governing equation for the free vibration of column, the density of immersed part was modified to account for the added fluid mass. The governing differential equations are solved numerically using the corresponding boundary conditions. Numerical results are presented to show the effects on the natural frequencies of non-dimensional system parameters: the mass density ratio of fluid to column, the ratio of fluid depth to span length, the ratio of tip mass to total column mass, the dimensionless mass moment of inertia, the eccentricity, the translation spring parameter, and the rotational spring parameter.

  • PDF

The Effects of Parameter Changes on the Properties of an Air Spring (공기스프링의 파라미터 변화가 특성 변화에 미치는 영향)

  • Jang, Ji-Seong
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.77-82
    • /
    • 2014
  • The air spring is widely used in various fields such as a suspension system and an anti-vibration system because the natural frequency is kept constant regardless of the change in the load, spring constant is easy to change, and, vibration and shock isolation performance are excellent. The purpose of this study is to derive a nonlinear governing equation of an air spring, to analyze the effect of the various parameters on the dynamic stiffness of the air spring, and, to suggest a more efficient design method of an air spring system. In order to do so, this study investigates the impact of all the parameters that could affect the dynamic stiffness of the air spring while changing the excitation amplitude and the frequency with a developed governing equation.

Effect of the Number of Nodular Grains on Low Cycle Fatigue Life in Spheroidal Graphite Cast Iron (저사이클 피로수명에 영향을 미치는 구상흑연주철의 흑연입자수의 영향)

  • Kim, Min-Gun;Lee, Byeong-Hyeon;Yoo, Byung-Ho
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.3-8
    • /
    • 2000
  • Low cycle fatigue life of spheroidal graphite cast iron is determined by the morphological parameters of internal graphite. The aim of this study is to clarify the effect of the number of nodular grain of spheroidal graphite cast iron on low cycle fatigue life. Two specimens that have identical average nodular grain size by changing nodular grain volume fraction and different number of nodular grain count was tested. In this paper, the parameter governing fatigue life through fatigue test, the number of nodular grain seriously affect fatigue life and nodular grain size is no longer governing parameter of it.

  • PDF

Mechanics of nonlocal advanced magneto-electro-viscoelastic plates

  • Ebrahimi, Farzad;Barati, Mohammad Reza;Tornabene, Francesco
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.257-269
    • /
    • 2019
  • This paper develops a nonlocal strain gradient plate model for damping vibration analysis of smart magneto-electro-viscoelastic nanoplates resting on visco-Pasternak medium. For more accurate analysis of nanoplate, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. Viscoelastic effect which is neglected in all previous papers on magneto-electro-viscoelastic nanoplates is considered based on Kelvin-Voigt model. Governing equations of a nonlocal strain gradient smart nanoplate on viscoelastic substrate are derived via Hamilton's principle. Galerkin's method is implemented to solve the governing equations. Effects of different factors such as viscoelasticity, nonlocal parameter, length scale parameter, applied voltage and magnetic potential on damping vibration characteristics of a nanoplate are studied.

Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes

  • Ebrahimi, Farzad;Dehghan, M.;Seyfi, Ali
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • In this article, wave propagation characteristics in magneto-electro-elastic (MEE) nanotube considering shell model is studied in the framework nonlocal theory. To account for the small-scale effects, the Eringen's nonlocal elasticity theory of is applied. Nonlocal governing equations of MEE nanotube have been derived utilizing Hamilton's principle. The results of this investigation have been accredited by comparing them of previous studies. An analytical solution of governing equations is used to obtain phase velocities and wave frequencies. The influences of different parameters, such as different mode, nonlocal parameter, length parameter, geometry, magnetic field and electric field on wave propagation responses of MEE nanotube are expressed in detail.