• Title/Summary/Keyword: gold-nanoparticles

Search Result 280, Processing Time 0.034 seconds

Advantage of the Intensive Light Scattering by Plasmonic Nanoparticles in Velocimetry

  • Rong, Tengda;Li, Quanshui
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.79-85
    • /
    • 2022
  • Tracers are one of the critical factors for improving the performance of velocimetry. Silver and gold nanoparticles as tracers with localized surface-plasmon resonance are analyzed for their scattering properties. The scattering cross sections, angular distribution of the scattering, and equivalent scattering cross sections from 53° and 1.5° half-angle cones at 532 nm are calculated, with particle sizes in the nanoscale range. The 53° and 1.5° half-angle cones used as examples correspond respectively to the collection cones for microscope objectives in microscopic measurements and camera lenses in macroscopic measurements. We find that there is a transitional size near 35 nm when comparing the equivalent scattering cross sections between silver and gold nanoparticles in water at 532 nm. The equivalent scattering cross section of silver nanoparticles is greater or smaller than that of gold nanoparticles when the particle radius is greater or smaller than 35 nm respectively. When the radius of the plasmonic nanoparticles is smaller than about 44 nm, their equivalent scattering cross sections are at least ten times that of TiO2 nanoparticles. Plasmonic nanoparticles are promising for velocimetry applications.

Electrochemistry on Alternate Structures of Gold Nanoparticles and Ferrocene-Tethered Polyamidoamine Dendrimers

  • Suk, Jung-Don;Lee, Joo-Han;Kwak, Ju-Hyoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1681-1686
    • /
    • 2004
  • Self-assembled systems with polyamidoamine (PAMAM) dendrimers combined with gold nanoparticles have been widely studied because of their potential applications in molecular electronics, catalyst carriers, chemical sensors, and biomedical devices. In our work, gold nanoparticle monolayers and multilayers with pure and ferrocene-tethered PAMAM dendrimers as cross-linking molecules were deposited on a mixed self-assembled monolayer of gold substrates. The various generations of PAMAM dendrimers can be covalently attached to mercaptoundecanoic acid mixed with a mercaptoundecanol self-assembled monolayer. Cyclic voltammograms show that redox peak currents on the alternate multilayers of gold nanoparticles and ferrocene-tethered PAMAM dendrimers increase as the number of layers increases. Fourier transform IR external reflection spectroscopy and scanning electron microscopy support the results from electrochemical measurements.

Gold Nanoparticles-embedded MAPbI3 Perovskite Thin Films

  • Kim, Hyojung;Byun, Hye Ryung;Kim, Bora;Jeong, Mun Seok
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1725-1728
    • /
    • 2018
  • We synthesized the gold nanoparticles (Au NPs)-embedded methylammonium lead iodide ($MAPbI_3$) film for the first time. The effects of metal nanoparticles on $MAPbI_3$ perovskite were systematically studied using UV-Vis absorption and photoluminescence (PL) measurements. As a result, the 20-nm-sized Au NPs-embedded $MAPbI_3$ film exhibited a 4.15% higher absorbance than the bare $MAPbI_3$ film. Moreover, the average PL intensity of the Au NPs-embedded $MAPbI_3$ film increased by about 75.25% over the bare $MAPbI_3$ film. Therefore, we have confirmed that addition of the Au NPs has a positive effect on the optical properties of $MAPbI_3$, and we believe that this study will provide a basic insight into the metal nanoparticles-embedded perovskite thin films for the future optoelectronic applications.

Adsorption Behaviors of Amphiphilic AuNPs at the Interface between Diverse organic Solvents and Water (다양한 유기용매와 물 경계면에서의 양친매성 금나노입자의 흡착 거동)

  • Yeon-Su Lim;Yeong-min Lee;Kyo-Chan Koo;Hee-Young Lee
    • Journal of Adhesion and Interface
    • /
    • v.25 no.1
    • /
    • pp.157-161
    • /
    • 2024
  • Amphiphilic gold nanoparticles, synthesized by the simultaneous binding of hydrophilic and hydrophobic ligands on their surfaces, find diverse applications in energy, bio, optical, electronic technologies, and various other fields. Particularly, these amphiphilic gold nanoparticles possess both hydrophilic and hydrophobic characteristics, enabling them to activate interface at the interface of immiscible fluids and form organized structures. The surface properties of gold nanoparticles play a crucial role in influencing the behaviors of amphiphilic gold nanoparticles at the interface of two fluids. Therefore, this study investigated the adsorption behaviors of gold nanoparticles at the organic solvent-water interface based on the surface characteristics of amphiphilic gold nanoparticles and the type of organic solvents. It was observed that the amount of adsorbed gold nanoparticles at the interface increased with the length of hydrocarbon chains in hydrophobic ligands and increased with shorter hydrocarbon chains in the organic solvent. Furthermore, using the Langmuir isotherm model, the study confirmed the formation of a monolayer by amphiphilic gold nanoparticles and obtained significant thermodynamic parameters simultaneously.

Markable Green Synthesis of Gold Nanoparticles Used As Efficacious Catalyst for the Reduction of 4-Nitrophenol

  • Rokade, Ashish A.;Yoo, Seong Il;Jin, Youngeup;Park, Seong Soo
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.251-256
    • /
    • 2020
  • The biocompatibility and plasmonic properties of Au nanoparticles make them useful for photothermal therapy, drug delivery, imaging, and many other fields. This study demonstrated a novel, facile, economic, and green synthetic method to produce gold nanoparticles. Gold nanoparticles (AuNPs) with spherical and triangular shapes were effectively synthesized using only Schisandra chenesis fruit extract as the capping and reducing agent. The shape of the AuNPs could be engineered simply by adjusting the molar concentration of HAuCl4 in the reaction mixture. The as-synthesized AuNPs were characterized using UV-VIS spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and energy dispersive X-ray analysis (EDXA). This study revealed that by using the HAuCl4 concentration in the AuNP synthesis, the shape and size of the AuNPs could be controlled by the concentration of HAuCl4 and Schisandra chinensis fruit extract as a surfactant. The as-synthesized AuNPs samples had sufficient colloidal stability without noticeable aggregation and showed the predominant growth of the (111) plane of face-centered cubic gold during the crystal growth. The catalytic efficiency of the AuNPs synthesized using Schisandra chenesis fruit extract was examined by monitoring the catalytic reduction of 4-nitrophenol to 4-aminophenol using Ultraviolet-visible spectroscopy (UV-Vis spectroscopy). The synthesized AuNPs showed good catalytic activity to reduce 4-nitrophenol to 4-aminophenol, revealing their practical usefulness.

Shape Control of Gold Nanocrystal: Synthesis of Faceted Gold Nanoparticles and Construction of Morphology Diagram

  • Ahn, Hyo-Yong;Lee, Hye-Eun;Nam, Ki Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.281.1-281.1
    • /
    • 2013
  • Shape control of gold nanocrystal is still one of the most important challenges remaining to achieve geometry dependent properties. Thus far, several strategies have been developed to control the shape of nanoparticles, such as adding capping agents and diverse additives or adjusting the temperature and pH. Here, we used an already established seed-mediated method that allowed us to focus on controlling the growth stage. Cetyltrimethylammonium bromide (CTAB) and ascorbic acid (AA) were used as the ligand and the reducing agent, respectively, without using any additional additives during the growth stage. We investigated how the relative ratio of CTAB and AA concentrations could be a major determinant of nanoparticle shape over a wide concentration range of CTAB and AA. As a result, a morphology diagram was constructed experimentally that covered the growth conditions of rods, cuboctahedra, cubes, and rhombic dodecahedra. The trends in the morphology diagram emphasize the importance of the interplay between CTAB and AA. Furthermore, high-index faceted gold nanocrystal was obtained by two step seeded growth. Already synthesized cubic particles developed into hexoctahedral nanocrystal consisting of 48 identical {321} facets, which indicates that the growth of gold nanocrystal is affected by initial morphology of seed particles. The hexoctahedral gold nanoparticles can be used in catalysis and optical applications which exploiting their unique geometry. Our research can provide useful guidelines for designing various facetted geometries.

  • PDF

The Effect of pH-adjusted Gold Colloids on the Formation of Gold Clusters over APTMS-coated Silica Cores

  • Park, Sang-Eun;Park, Min-Yim;Han, Po-Keun;Lee, Sang-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1341-1345
    • /
    • 2006
  • An electrostatic interaction is responsible for the attachment of gold seeds of 1-3 nm onto APTMS (3-aminopropyl trimethoxysilane)-coated silica cores in the formation of gold clusters. A surface plasmon resonance and morphology of gold clusters were significantly affected by the pH of gold colloids prepared by THPC reducing agent. Gold colloids of alkaline pH induced the heterogeneous deposition of gold seeds onto the silica nanoparticles, probably due to the continuous reduction of residual gold ions during the attachment process. Gold colloids of acidic pH induced the monodisperse deposition of gold seeds, consequently leading to the formation of smooth gold layer on the silica nanoparticles surface. The gold nanoshells (core radius = 80 nm) prepared by gold colloids of pH 3.1 exhibited the more red-shift and relatively stronger intensity of plasmon absorption bands, compared with gold nanoshells prepared by alkaline gold colloids of pH 9.7.

Recent Progress in Colorimetric Assays Using the Absorption of Plasmonic Gold Nanoparticles (플라즈모닉 금 나노입자의 흡광 특성을 활용한 생화학적 비색 분석법 연구 동향)

  • Bong-Geun Kim;Sang Bin Yoon;Sukyeong Hwang;Hyon Bin Na
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.67-78
    • /
    • 2024
  • Light absorption has potential as a signal in biochemical analyses due to its simplicity in measurement and interpretational clarity. Among substances that generate absorption signals, gold nanoparticles possess advantages such as chemical stability, biological compatibility, and unique optical properties from the localized surface plasmon resonance (LSPR) in the visible light range. They also exhibit versatility compared to other colorimetric substances effective only for specific target molecules, as they easily conjugate with various detection active substances like antibodies and aptamers. Particularly due to advantages such as low cost, ease of particle synthesis, and high environmental stability compared to enzyme-based colorimetric methods, gold nanoparticles are extensively researched as signal substances in colorimetric assays. This review summarizes various strategies utilizing gold nanoparticles as absorption signal substances, focusing on recent research. Based on the characteristics of gold nanoparticles, where the optical property is influenced by particle morphology, literature is classified and reviewed based on strategies controlling the shape of gold nanoparticles during signal generation. Through this, it is observed that gold nanoparticles, which have been used as absorption signal substances, continue to be actively researched, affirming their potential for broad and continuous improvement in the future.

Evaluation of SERS Nanoparticles to Detect Bacillus cereus and Bacillus thuringiensis

  • Hong, Jeehwa;Qin, Jianwei;Van Kessel, Jo Ann S.;Oh, Mirae;Dhakal, Sagar;Lee, Hoonsoo;Hwang, Chansong;Chan, Diane E.;Kim, Dongho;Cho, Hyunjeong;Kim, Moon S.
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.394-400
    • /
    • 2018
  • Purpose: This research evaluated five types of nanoparticles to develop a surface-enhanced Raman spectroscopy (SERS) method for the rapid detection of two Bacillus species (Bacillus cereus and Bacillus thuringiensis) that are commonly found on fresh produce, which can cause food poisoning. Methods: Bacterial concentrations were adjusted to a constant turbidity, and a total of $30{\mu}L$ of each Bacillus cell suspension was prepared for each nanoparticle. A point-scan Raman system with laser light source of wavelength 785 nm was used to obtain SERS data. Results: There was no qualitative difference in the SERS data of B. cereus and B. thuringiensis for any of the five nanoparticles. Three gold nanoparticles, stabilized in either citrate buffer or ethanol, showed subtle differences in Raman intensities of two Bacillus species at $877.7cm^{-1}$. Conclusions: Among the three types of nanoparticles, the gold nanoparticles stabilized in citrate buffer showed the lowest standard deviation, followed by gold nanoparticles stabilized in ethanol. This result supports the potential application of gold nanoparticles for SERS-based detection of B. cereus and B. thuringiensis.

Gallic Acid Enhancement of Gold Nanoparticle Anticancer Activity in Cervical Cancer Cells

  • Daduang, Jureerut;Palasap, Adisak;Daduang, Sakda;Boonsiri, Patcharee;Suwannalert, Prasit;Limpaiboon, Temduang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.169-174
    • /
    • 2015
  • Cervical cancer (CxCa) is the most common cancer in women and a prominent cause of cancer mortality worldwide. The primary cause of CxCa is human papillomavirus (HPV). Radiation therapy and chemotherapy have been used as standard treatments, but they have undesirable side effects for patients. It was reported that gallic acid has antioxidant, antimicrobial, and anticancer activities. Gold nanoparticles are currently being used in medicine as biosensors and drug delivery agents. This study aimed to develop a drug delivery agent using gold nanoparticles conjugated with gallic acid. The study was performed in uninfected (C33A) cervical cancer cells, cervical cancer cells infected with HPV type 16 (CaSki) or 18 (HeLa), and normal Vero kidney cells. The results showed that GA inhibited the proliferation of cancer cells by inducing apoptosis. To enhance the efficacy of this anticancer activity, 15-nm spherical gold nanoparticles (GNPs) were used to deliver GA to cancer cells. The GNPs-GA complex had a reduced ability compared to unmodified GA to inhibit the growth of CxCa cells. It was interesting that high-concentration ($150{\mu}M$) GNPs-GA was not toxic to normal cells, whereas GA alone was cytotoxic. In conclusion, GNPs-GA could inhibit CxCa cell proliferation less efficiently than GA, but it was not cytotoxic to normal cells. Thus, gold nanoparticles have the potential to be used as phytochemical delivery agents for alternative cancer treatment to reduce the side effects of radiotherapy and chemotherapy.