Browse > Article
http://dx.doi.org/10.5307/JBE.2018.43.4.394

Evaluation of SERS Nanoparticles to Detect Bacillus cereus and Bacillus thuringiensis  

Hong, Jeehwa (Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, US Department of Agriculture)
Qin, Jianwei (Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, US Department of Agriculture)
Van Kessel, Jo Ann S. (Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, US Department of Agriculture)
Oh, Mirae (Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, US Department of Agriculture)
Dhakal, Sagar (Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, US Department of Agriculture)
Lee, Hoonsoo (Dept. of Biosystems Engineering, Chungbuk National University)
Hwang, Chansong (Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, US Department of Agriculture)
Chan, Diane E. (Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, US Department of Agriculture)
Kim, Dongho (Experiment Research Institute, National Agricultural Products Quality Management Service)
Cho, Hyunjeong (Experiment Research Institute, National Agricultural Products Quality Management Service)
Kim, Moon S. (Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, US Department of Agriculture)
Publication Information
Journal of Biosystems Engineering / v.43, no.4, 2018 , pp. 394-400 More about this Journal
Abstract
Purpose: This research evaluated five types of nanoparticles to develop a surface-enhanced Raman spectroscopy (SERS) method for the rapid detection of two Bacillus species (Bacillus cereus and Bacillus thuringiensis) that are commonly found on fresh produce, which can cause food poisoning. Methods: Bacterial concentrations were adjusted to a constant turbidity, and a total of $30{\mu}L$ of each Bacillus cell suspension was prepared for each nanoparticle. A point-scan Raman system with laser light source of wavelength 785 nm was used to obtain SERS data. Results: There was no qualitative difference in the SERS data of B. cereus and B. thuringiensis for any of the five nanoparticles. Three gold nanoparticles, stabilized in either citrate buffer or ethanol, showed subtle differences in Raman intensities of two Bacillus species at $877.7cm^{-1}$. Conclusions: Among the three types of nanoparticles, the gold nanoparticles stabilized in citrate buffer showed the lowest standard deviation, followed by gold nanoparticles stabilized in ethanol. This result supports the potential application of gold nanoparticles for SERS-based detection of B. cereus and B. thuringiensis.
Keywords
Bacillus cereus; Bacillus thuringiensis; Nanoparticle; Point-scan Raman; SERS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ankolekar, C., T. Rahmati and R.G. Labbe. 2009. Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice. International Journal of Food Microbiology 128(3): 460-466. http://doi.org/10.1016/j.ijfoodmicro.2008.10.006   DOI
2 Burnett, S.L. and L.R. Beuchat. 2001. Human pathogens associated with raw produce and unpasteurized juices, and difficulties in decontamination. Journal of Industrial Microbiology & Biotechnology 27(2): 104-110. http://doi.org/10.1038/sj.jim.7000199   DOI
3 Centers for Disease Control and Prevention (CDC). 2017. Surveillance for Foodborne Disease Outbreaks, United States, 2015, Annual Report. Atlanta, Georgia: US Department of Health and Human Services, CDC. Available at: www.cdc.gov (2018.7.18)
4 Kahraman, M., M.M. Yazici, F. Sahin and M. Culha. 2008. Convective assembly of bacteria for surface- enhanced Raman scattering. Langmuir 24(3): 894-901. http://doi.org/10.1021/la702240q   DOI
5 Kalasinsky, K.S., T. Hadfield, A.A. Shea, V.F. Kalasinsky, M.P. Nelson, J. Neiss, A.J. Drauch, G.S. Vanni and P.J. Treado. 2007. Raman chemical imaging spectroscopy reagentless detection and identification of pathogens: signature development and evaluation. Analytical Chemistry 79(7): 2658-2673. http://doi.org/10.1021/ac0700575   DOI
6 Khatami, M., H.Q. Alijani, M.S. Nejad and R.S. Varma. 2018. Core@shell nanoparticles: greener synthesis using natural plant products. Applied Sciences 8(3): 411. http://doi.org/10.3390/app8030411   DOI
7 Zhou, Y., Y. Kong, S. Kundu, J.D. Cirillo and H. Liang. 2012. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and Bacillus Calmette-Guerin. Journal of Nanobiotechnology 10: 19. http://doi.org/10.1186/1477-3155-10-19   DOI
8 Mosier-Boss, P.A. 2017. Review on SERS of Bacteria. Biosensors 7(4): 51. http://doi.org/10.3390/bios7040051   DOI
9 Li, F., S. Zuo, P. Yu, B. Zhou, L. Wang, C. Liu, H. Wei and H. Xu. 2016. Distribution and expression of the enterotoxin genes of Bacillus cereus in food products from Jiangxi Province, China. Food Control 67: 155-162. http://doi.org/10.1016/j.foodcont.2016.02.049   DOI
10 Ministry of Food and Drug Safety (MFDS). 2018. Food poisoning outbreak DB. Available at: www.foodsafetykorea.go.kr (2018.7.18)
11 Organji, S.R., H.H. Abulreesh, K. Elbanna, G.E.H. Osman and M. Khider. 2015. Occurrence and characterization of toxigenic Bacillus cereus in food and infant feces. Asian Pacific Journal of Tropical Biomedicine 5(7): 515-520. http://doi.org/10.1016/j.apjtb.2015.04.004   DOI
12 Pahlow, S., S. Meisel, D. Cialla-May, K. Weber, P. Rosch and J. Popp. 2015. Isolation and identification of bacteria by means of Raman spectroscopy. Advanced Drug Delivery Reviews 89: 105-120. http://doi.org/10.1016/j.addr.2015.04.006   DOI
13 Pang, S., T. Yang and L. He. 2016. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. Trends in Analytical Chemistry 85: 73-82. http://doi.org/10.1016/j.trac.2016.06.017   DOI
14 Premasiri, W.R., J.C. Lee, A. Sauer-Budge, R. Théberge, C.E. Costello and L.D. Ziegler. 2016. The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Analytical and Bioanalytical Chemistry 408(17): 4631-4647. http://doi.org/10.1007/s00216-016-9540-x   DOI
15 Qin, J., K. Chao and M.S. Kim. 2010. Raman chemical imaging system for food safety and quality inspection. Transactions of the ASABE 53(6): 1873-1882. http://doi.org/10.13031/2013.35796   DOI
16 Vilas-Boas, G.T., A.P.S. Peruca and O.M.N. Arantes. 2007. Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis. Canadian Journal of Microbiology 53(6): 673-687. http://doi.org/10.1139/W07-029   DOI
17 Schmidt, M.S., J. Hubner and A. Boisen. 2012. Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Advanced Optical Materials 24(10): OP11-OP18. http://doi.org/10.1002/adma.201103496   DOI
18 Sharma, B., R.R. Frontiera, A.-I. Henry, E. Ringe and R.P. Van Duyne. 2012. SERS: materials, applications, and the future. Materials Today 15(1-2): 16-25. http://doi.org/10.1016/S1369-7021(12)70017-2   DOI
19 Sundaram, J., B. Park, A.H. Jr., K.C. Lawrence and Y. Kwon. 2013. Detection and differentiation of Salmonella serotypes using surface enhanced Raman scattering (SERS) technique. Food Measure 7(1): 1-12. http://doi.org/10.1007/s11694-012-9133-0   DOI
20 Wang, P., S. Pang, J. Chen, L. McLandsborough, S.R. Nugen, M. Fan and L. He. 2016. Label-free mapping of single bacterial cells using surface-enhanced Raman spectroscopy. Analyst 141(4): 1356-1362. http://doi.org/10.1039/C5AN02175H   DOI
21 Yang, D., H. Zhou, C. Haisch, R. Niessner and Y. Ying. 2016a. Reproducible E. coli detection based on label-free SERS and mapping. Talanta 146: 457-463. http://doi.org/10.1016/j.talanta.2015.09.006   DOI
22 Yang, T., Z. Zhang, B. Zhao, R. Hou, A. Kinchla, J.M. Clark and L. He. 2016b. Real-time and in situ monitoring of pesticide penetration in edible leaves by surfaceenhanced Raman scattering mapping. Analytical Chemistry 88(10): 5243-5250. http://doi.org/10.1021/acs.analchem.6b00320   DOI
23 Zhang, H., X. Ma, Y. Liu, N. Duan, S. Wu and Z. Wang. 2015. Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosensors and Bioelectronics 74: 872-877. http://doi.org/10.1016/j.bios.2015.07.033   DOI