Browse > Article
http://dx.doi.org/10.3807/COPP.2022.6.1.079

Advantage of the Intensive Light Scattering by Plasmonic Nanoparticles in Velocimetry  

Rong, Tengda (Department of Applied Physics, School of Mathematics and Physics, University of Science and Technology Beijing)
Li, Quanshui (Department of Applied Physics, School of Mathematics and Physics, University of Science and Technology Beijing)
Publication Information
Current Optics and Photonics / v.6, no.1, 2022 , pp. 79-85 More about this Journal
Abstract
Tracers are one of the critical factors for improving the performance of velocimetry. Silver and gold nanoparticles as tracers with localized surface-plasmon resonance are analyzed for their scattering properties. The scattering cross sections, angular distribution of the scattering, and equivalent scattering cross sections from 53° and 1.5° half-angle cones at 532 nm are calculated, with particle sizes in the nanoscale range. The 53° and 1.5° half-angle cones used as examples correspond respectively to the collection cones for microscope objectives in microscopic measurements and camera lenses in macroscopic measurements. We find that there is a transitional size near 35 nm when comparing the equivalent scattering cross sections between silver and gold nanoparticles in water at 532 nm. The equivalent scattering cross section of silver nanoparticles is greater or smaller than that of gold nanoparticles when the particle radius is greater or smaller than 35 nm respectively. When the radius of the plasmonic nanoparticles is smaller than about 44 nm, their equivalent scattering cross sections are at least ten times that of TiO2 nanoparticles. Plasmonic nanoparticles are promising for velocimetry applications.
Keywords
Localized surface plasmon resonance; Noble metal nanoparticles; Particle image velocimetry; Particle tracking velocimetry; Scattering;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 V. Liberman, M. Sworin, R. P. Kingsborough, G. P. Geurtsen, and M. Rothschild, "Nonlinear bleaching, absorption, and scattering of 532-nm-irradiated plasmonic nanoparticles," J. Appl. Phys. 113, 053107 (2013).   DOI
2 S. Pouya, M. Koochesfahani, P. Snee, M. Bawendi, and D. Nocera, "Single quantum dot (QD) imaging of fluid flow near surfaces," Exp. Fluids 39, 784-786 (2005).   DOI
3 J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, "A particle image velocimetry system for microfluidics," Exp. Fluids 25, 316-319 (1998).   DOI
4 M. Shimura, S. Yoshida, K. Osawa, Y. Minamoto, T. Yokomori, K. Iwamoto, M. Tanahashi, and H. Kosaka, "Micro particle image velocimetry investigation of near-wall behaviors of tumble enhanced flow in an internal combustion engine," Int. J. Eng. Res. 20, 718-725 (2019).   DOI
5 M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry, 2th ed. (Springer-Verlag, Germany. 2007).
6 P. A. Walsh, V. M. Egan, and E. J. Walsh, "Novel micro-PIV study enables a greater understanding of nanoparticle suspension flows: nanofluids," Microfluid. Nanofluidics 8, 837-842 (2010).   DOI
7 Y. X. Zhao, S. H. Yi, L. F. Tian, and Z. Y. Cheng, "Supersonic flow imaging via nanoparticles," Sci. China Technol. Sci. 39, 3640 (2009).
8 P. Yu, M. C. Beard, R. J. Ellingson, S. Ferrere, C. Curtis, J. Drexler, F. Luiszer, and A. J. Nozik, "Absorption cross-section and related optical properties of colloidal InAs quantum dots," J. Phys. Chem. B 109, 7084-7087 (2005).   DOI
9 J. E. Abboud, X. Chong, M. Zhang, Z. Zhang, N. Jiang, S. Roy, and J. R. Gord, "Photothermally activated motion and ignition using aluminum nanoparticles," Appl. Phys. Lett. 102, 023905 (2013).   DOI
10 L. K. Sorensen, D. E. Khrennikov, V. S. Gerasimov, A. E. Ershov, M. A Vysotin, S. Monti, V I. Zakomirnyi, S. P. Polyutov, H.Agren, and S. V. Karpov, "Thermal degradation of optical resonances in plasmonic nanoparticles," Nanoscale 14, 433-447 (2022).   DOI
11 S. Link and M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles," J. Phys. Chem. B 103, 4212-4217 (1999).   DOI
12 P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).   DOI
13 A. M. Olaizola, "Photothermal determination of absorption and scattering spectra of silver nanoparticles," Appl. Spectrosc. 72, 234-240 (2018).   DOI
14 D. Malsch, M. Kielpinski, R. Merthan, J. Albert, G. Mayer, J. M. Kohler, H. Susse, M. Stahl, and T. Henkel, "μPIV-analysis of Taylor flow in micro channels," Chem. Eng. J. 135, S166-S172 (2008).   DOI
15 J. Westerweel, P. F. Geelhoed, and R. Lindken, "Single-pixel resolution ensemble correlation for micro-PIV applications," Exp. Fluids 37, 375-384 (2004).   DOI
16 X. Zhang and Q. Li, "Forced damped harmonic oscillator model of the dipole mode of localized surface plasmon resonance," Plasmonics 16, 1525-1536 (2021).   DOI
17 Y. Lyu, J. Ruan, M. Zhao, R. Hong, H. Lin, D. Zhang, and C. Tao, "Enhancement of photoluminescence by Ag localized surface plasmon resonance for ultraviolet detection," Curr. Opt. Photonics 5, 1-7 (2021).   DOI
18 T. P. Otanicar, B. T. Higgins, S. Brunter, P. E. Phelan, L. Dai, and R. Swaminathan, "Temperature dependent optical properties of nanoparticle suspensions," in Proc. ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels (Puerto Rico, USA, Jul. 2012).
19 D. D. Evanoff and G. Chumanov, "Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections," J. Phys. Chem. B 108, 13957-13962 (2004).   DOI
20 Q. Li and Z. Zhang, "Broadband tunable and double dipole surface plasmon resonance by TiO2 Core/Ag shell nanoparticles," Plasmonics 6, 779-784 (2011).   DOI
21 G. Seok, S. Choi, and Y. Kim, "Single-pixel autofocus with plasmonic nanostructures," Curr. Opt. Photonics 4, 428-433 (2020).   DOI
22 L. Polavarapu, Q. H. Xu, M. S. Dhoni, and W. Ji, "Optical limiting properties of silver nanoprisms," Appl. Phys. Lett. 92, 263110 (2008).   DOI
23 A. Farmani, "Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range," J. Opt. Soc. America B 36, 401-407 (2019).   DOI
24 A. Farmani and A. Mir, "Graphene sensor based on surface plasmon resonance for optical scanning," IEEE Photonics Technol. Lett. 31, 643-646 (2019).   DOI
25 Y.-T. Chen, P.-H. Lee, P.-T. Shen, J. Launer, R. Oketani, K.-Y. Li, Y.-T. Huang, K. Masui, S. Shoji, K. Fujita, and S.-W. Chu, "Study of nonlinear plasmonic scattering in metallic nanoparticles," ACS Photonics 3, 1432-1439 (2016).   DOI
26 E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, USA. 1985).
27 A. Melling, "Tracer particles and seeding for particle image velocimetry," Meas. Sci. Technol. 8, 1406-1416 (1997).   DOI
28 S. J. Williams, C. Park, and S. T. Wereley, "Advances and applications on microfluidic velocimetry techniques," Microfluid. Nanofluid. 8, 709-726 (2010).   DOI
29 M. Braun, W. Schroder, and M. Klaas, "High-speed tomographic PIV measurements in a DISI engine," Exp. Fluids 60, 146 (2019).   DOI
30 M. Mujat, R. D. Ferguson, N. Iftimia, D. X. Hammer, I. Nedyalkov, M. Wosnik, and H. Legner, "Optical coherence tomography-based micro-particle image velocimetry," Opt. Lett. 38, 4558-4561 (2013).   DOI
31 Y. Matsuura, A. Nakamura, and H. Kato, "Nanoparticle tracking velocimetry by observing light scattering from individual particles," Sens. Actuators B Chem. 256, 1078-1085 (2018).   DOI
32 Y. Matsuura, A. Nakamura, and H. Kato, "Determination of nanoparticle size using flow particle tracking method," Anal. Chem. 90, 4182-4187 (2018).   DOI
33 M. G. Olsen and R. J. Adrian, "Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry," Exp. Fluids 29, S166-S174 (2000).   DOI
34 T. Ming, H. J. Chen, R. B. Jiang, Q. Li, and J. F. Wang, "Plasmon-Controlled Fluorescence: Beyond the Intensity Enhancement," J. Phys. Chem. Lett. 3, 191-202 (2012).   DOI
35 C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, "On the absorption cross section of CdSe nanocrystal quantum dots," J. Phys. Chem. B 106, 7619-7622 (2002).   DOI
36 Z. Zhang, Q. Li, S. S. Haque, and M. Zhang, "Far-field plasmonic resonance enhanced nanoparticle image velocimetry within a microchannel," Rev. Sci. Inst. 82, 023117 (2011).   DOI