• Title/Summary/Keyword: gold alloy

Search Result 233, Processing Time 0.027 seconds

Recovery of Metallic Lithium by Room-Temperature Electrolysis: I. Effect of Electrode Materials (상온(常溫) 전해법(電解法)에 의한 리튬 금속(金屬)의 회수(回收): I. 전극물질(電極物質)의 영향(影響))

  • Lee, Jae-O;Park, Jesik;Lee, Churl Kyoung
    • Resources Recycling
    • /
    • v.21 no.6
    • /
    • pp.45-50
    • /
    • 2012
  • The room-temperature electrodeposition of metallic lithium was investigated from ionic liquid, 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13TFSI) with lithium bis (trifluoromethanesulfonyl)imide (LiTFSI) as a lithium source. Cyclic voltammograms on gold working electrode showed the possibility of the electrodeposition of metallic lithium, and the reduction current on a gold electrode was higher than the value on platinum and copper. The metallic lithium could be electrodeposited on the gold electrode under potentiostatic condition at -2.4 V (vs. Pt-QRE) and was confirmed by analytical techniques including XRD and SEM-EDS. The dendrite-typed electrodeposits were composed of a metallic lithium and a alloy with gold substrate. And any impurity could be detected except for trace oxygen introduced during handling for the analyses.

Effect of intra-crown cantilever on mechanical strength of internal conical joint type implant (치관 내 캔틸레버 양에 따른 내측 연결 형태 임플란트의 기계적 강도에 대한 연구)

  • Yun, Mi-Jung;Huh, Jung-Bo;Jeong, Chang-Mo;Jeon, Young-Chan;Kang, Eun-Sook
    • The Journal of the Korean dental association
    • /
    • v.53 no.5
    • /
    • pp.360-367
    • /
    • 2015
  • Purpose : The purpose of this study was to evaluate the effect of amount of cantilever in intra-crown according to implant fixture position on mechanical strength of internal conical joint type implant. Materials and Methods : Internal conical joint type implant fixture, abutment screw, abutment was connected and gold alloy prostheses were fabricated and cemented on abutment. For fatigue fracture test, the specimens were loaded to the 350 N, 2,000,000 cycle on 3, 4, 5, and 6 mm off-center of gold alloy prostheses. The fracture pattern of implant component was observed. Results : No fatigue fracture found on 3 and 4 mm group. But initial crack pattern found on 3 specimens of 4 mm group. Fatigue fracture found on all specimens of 5 mm group. But complete fracture was not observed. One specimen of 6 mm group fracture completely. Implant fixture fracture wax not observed. Conclusion : The mechanical failure of implant prostheses increased with the loading area farther from center of implant fixture. To reduce mechanical problem of internal joint type implant, surgical and prosthetic consideration is needed.

Development of Concentration Control System for Ni-W Alloy Plating Solution (니켈-텅스텐 합금 도금 공정액 농도 제어 시스템 개발)

  • Kong, Jung-Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.273-279
    • /
    • 2016
  • This paper deals with a control system with a concentration sensor for Ni-W alloy plating solutions. The printed circuit board market has increased with the development of the electronics industry. Gold consumption has also increased dramatically. Various studies of composite plating solutions have been conducted because of the expense of gold. In comparison, the development of sensors capable of measuring a composite plating solution in real-time is still insufficient. Furthermore, there are few systems that can measure and control the concentration of the solution precisely. This study developed a sensor and system to control the concentration of composite plating solution accurately. The sensors were developed based on a spectrophotometric method and a feedback control method was applied in this system.

Comparative study of the shear bond strength of various veneering materials on grade II commercially pure titanium

  • Lee, Eun-Young;Jun, Sul-Gi;Wright, Robert F.;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.69-75
    • /
    • 2015
  • PURPOSE. To compare the shear bond strength of various veneering materials to grade II commercially pure titanium (CP-Ti). MATERIALS AND METHODS. Thirty specimens of CP-Ti disc with 9 mm diameter and 10 mm height were divided into three experimental groups. Each group was bonded to heat-polymerized acrylic resin (Lucitone 199), porcelain (Triceram), and indirect composite (Sinfony) with 7 mm diameter and 2 mm height. For the control group (n=10), Lucitone 199 were applied on type IV gold alloy castings. All samples were thermocycled for 5000 cycles in $5-55^{\circ}C$ water. The maximum shear bond strength (MPa) was measured with a Universal Testing Machine. After the shear bond strength test, the failure mode was assessed with an optic microscope and a scanning electron microscope. Statistical analysis was carried out with a Kruskal-Wallis Test and Mann-Whitney Test. RESULTS. The mean shear bond strength and standard deviations for experimental groups were as follows: Ti-Lucitone 199 ($12.11{\pm}4.44$ MPa); Ti-Triceram ($11.09{\pm}1.66$ MPa); Ti-Sinfony ($4.32{\pm}0.64$ MPa). All of these experimental groups showed lower shear bond strength than the control group ($16.14{\pm}1.89$ MPa). However, there was no statistically significant difference between the Ti-Lucitone 199 group and the control group, and the Ti-Lucitone 199 group and the Ti-Triceram group. Most of the failure patterns in all experimental groups were adhesive failures. CONCLUSION. The shear bond strength of veneering materials such as heat-polymerized acrylic resin, porcelain, and indirect composite to CP-Ti was compatible to that of heatpolymerized acrylic resin to cast gold alloy.

The Effect of Burn-out Temperature and Cooling Rate on the Microstructure and Corrosion Behavior of Dental Casting Gold Alloy (치과용 합금 주조 시의 소환온도와 주조 후 냉각방법이 미세조직과 부식거동에 미치는 영향)

  • Lee, Sang-Hyeok;Ham, Duck-Sun;Kim, Hak-Kwan;Jang, Ju-Woong;Kim, Myung-Ho
    • Journal of Technologic Dentistry
    • /
    • v.22 no.1
    • /
    • pp.69-78
    • /
    • 2000
  • The microstructure and corrosion behavior of commercially dental casting gold alloys were investigated to clarify the effect of burn-out temperature and cooling rate. In the case of water quenching after casting, only the αphase, which is typical dendritic microstructure of golda alloy, was detected. However, the precipitates along the grain boundary were detected only at the slow cooling rate and they increased inversely proportional to the burn-out temperature. This might be due to the time difference which solute atom could diffuse. EPMA and SEM results also demonstrated that the precipitate should be lamellar structure consisted of Ag rich phase(${\alpha}_1$) and Cu rich phase (${\alpha}_2$). In terms of corrosion, the galvanic coupling was formed due to the difference of composition between precipitates and matrix at the slow cooling rate. In the case of water quenching, the critical current density($i_p$) which indicate the degree of corrosion was lowest at $650^{\circ}C$ and below the burnout temperature, $i_p$ increased with it because of the effect of grain boundary segregation. But above the temperature, $i_p$ increased with it. This may be due to the strain field effect by residual thermal stress.

  • PDF

THE EFFECT OF DIFFERENT SURFACE TREATMENTS ON THE SHEAR BOND STRENGTH OF THE RESIN TO TYPE IV GOLD ALLOY (금속면의 표면처리 방법에 따른 금합금과 전장레진간의 전단결합강도에 관한 연구)

  • Park, Dong-Won;Lim, Ho-Nam;Woo, Yi-Hyung;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.685-692
    • /
    • 1995
  • The effect of five different surface treatments on the shear bond strength of the resin bond to Type IV Gold alloy was studied by bonding resin to metal. The metal surface was subjected to one of the following treatments and bonded ;(1) air abraded with $50{\mu}m$ alumina particles,(2) beads(3) beads and tin-plated at curreant density of 300mA/$cm^2$,(4) tin-plated at current density of 300mA/$cm^2$,(5) silicacoating with sililink, and bonded with an MDP Opaque primer, CESEAD resin system. The bonded specimens were immersed in water for 23 hours after 1 hour resin curing and shear bond strength were recorded. On the basis of this study, the following conclusions can be drawn; 1. Difference were found in the shear bond strength among all experimental groups. And bead glroup exihibited the highest shear bond strength and sand blasting group exhibited the lowest shear bond strength on five groups. 2. Bead group, mechanical bonding was significantly higher than that obtained with the samples, tinplating, silicacoating, and chemical bonding. 3. No statistically signiflcant difference was found between the shear bond strengths obtained with bead and bead-tinplating, and between tinplating and sili cacoating.

  • PDF

IN VITRO EVALUATION OF PERIOTEST VALUES UNDER VARIOUS CONDITIONS OF PROSTHESES (보철물 조건에 따른 Periotest수치의 실험적 평가)

  • Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.793-800
    • /
    • 1997
  • Periotest(Siemens, Germany) has been used to test mobility of the implants clinically, however the effects of target materials and connection methods on the PTVs(Periotest Values) have not been evaluated. Periotest has been regarded as a reliable and objective tool to test implant and natural teeth mobility clinically, however this instrument showed different PTVs under various test conditions. This in vitro study was designed to compare PTVs of different veneering materials and prosthodontic designs (single and bridge restorations). To compare the effects of veneering materials on PTVs, 1 mm thickness of five different testing materials (porcelain, type III gold alloy, pure titanium, composite resin, acrylic resin) were placed on the resin block. Three full length of 13 mm Mark II implant fixtures were embedded into autopolymerizing resin block to fabricate single and bridge restorations. To evaluate effects of the connection method in single restorations, PTVs of screw retained(UCLA type) and cementation type(Cera-One system) were compared. Finally, to test reliability of PTVs of the final restorations, screw retained three unit short span PFM bridges were fabricated on the standard and Estheti-Cone abutments. All testing components were tightened with torque controller and PTVs of all specimens were measured 15 times for statistical analysis with SAS program. Following conclusions were made within the limit of this in vitro study. 1. PTVs of type III gold alloy, grade II titanium, composite resin veneering materials showed no significant differences, however acrylic resin and porcelain showed significant differences (P<0.05). 2. Single tooth restorations showed consistent PTVs as long as proper torque force was applied. 3. PTVs of bridge type prostheses was inconsistent regardless of abutment types. 4. PTVs of the prostheses showed higher scores and standard deviations than those of abutments regardless types of connection (P<0.05).

  • PDF

Manufacturing Techniques and Alloying Compositions of Metal Decorative Artifacts in 18th Century, Myanmar

  • Lee, Jae Sung;Win, Yee Yee;Lee, Bonnie;Yu, Jae Eun
    • Journal of Conservation Science
    • /
    • v.36 no.4
    • /
    • pp.296-305
    • /
    • 2020
  • Konbaung Dynasty was the last unified dynasty that ruled Myanmar from 18th to 19th century. During this time Buddhist art flourished in Myanmar due to the interest of the rulers toward their traditional culture. Metal decorative artifacts in the 18th century are classified into structures and Buddha statues. They are further subdivided into gilt-bronze and bronze objects, depending on their material component. Three-dimensional gilt-bronze decorative artifacts were cast with a brass alloy of Cu-Zn-Sn-Pb and their surfaces were gilded with extremely thin gold leaves (less than 1 ㎛ in thickness). The gilded layer approximately comprised 10 wt% silver in addition to the main element, gold. The lack of Hg in the gilded layer, indicated that the amalgam gilding technique was not applied. The analysis results indicated that the lacquered gilding technique was applied to the objects. Bronze decorative artifacts without gilding were cast with materials containing Cu-Sn-Pb. The bronze pavilions and bronze Buddha staues were crafted using the same alloy of high-tin bronze, which approximately contained 20 wt% Sn. No heat treatment was applied to reduce the brittleness of the objects after they were cast with a large amount of Sn. The most significant difference between the gilt-bronze and bronze decorative artifacts lie in their elemental compositions. The gilt-bronze decorative artifacts with their gilded surface were manufactured using brass containing zinc, while the unplated bronze decorative artifacts were composed of bronze containing tin. Artifacts of the same type and size are classified differently depending on the materials utilized in the surface treatment such as gilding.

Analysis and Conservation Treatment of Gilt-bronze Standing Buddha and Bronze Standing Buddha Statues Excavated from Yeongguksa Temple in Yeongdong (영동 영국사 출토 금동여래입상, 동제여래입상 분석 및 보존처리)

  • Yoo, Jayoung;Yang, Seulgi;Lee, Minhee
    • Conservation Science in Museum
    • /
    • v.19
    • /
    • pp.69-82
    • /
    • 2018
  • The gilt-bronze standing Buddha and bronze standing Buddha statues excavated from Yeongguksa Temple in Yeongdong, currently held in the collection of the Cheongju National Museum, underwent conservation treatment after scientific study. Materials analysis showed that the gilt-bronze statue was made with a ternary alloy of copper, tin, and lead, while the bronze statue is of a binary alloy of copper and tin. The analysis also revealed that the bronze statue contains gold, and it is therefore recommended to change its description to gilt-bronze standing Buddha. The gilt-bronze statue appears to have been made with lead produced in Korea. The material observed on the surface that is presumed to have been used as an adhesive for the gold coloring is thought to be lacquer. For conservation treatment, the statues were minimally cleaned using physical and chemical methods and were treated through consolidation and protective coating.

A study on structure of feed sprue considering turbulence and mold temperature in the investment casting process (Investment casting 공정에서 수축률을 고려한 소형탕도의 이상적인 구조와 주형 온도에 관한 연구)

  • Lee, Jong-Rae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.1
    • /
    • pp.25-32
    • /
    • 2022
  • Investment casting is a production method commonly used to manufacture precision equipment, medical fields, and accessories, and has continued to develop through the modernization of equipment and high quality of materials, and its scope of use has been expanded. The purpose of this study is to minimize the defect rate by deriving structural improvement and standardization of mold temperature, which are key elements of the investment casting process, to minimize the defect rate. The scope of the study is limited to jewelry manufacturing casting processes suitable for understanding the structure and principles of small gate, and an experimental research is to be conducted by using soft Wax, gypsum powder, and 14 K gold as research materials. According to the results, the most appropriate casting standard temperature for the casting pattern of Alloy 14 k was the lowest turbulence at 980℃ flask temperature of 550℃, so good products could be produced. As a future task of this study, detailed studies are needed to data the structure and system temperature of small gate, reduce production defects in the field, and provide data for excellent investment casting competitiveness.