• 제목/요약/키워드: gold (Au)

검색결과 601건 처리시간 0.026초

The Characteristic Self-assembly of Gold Nanoparticles over Indium Tin Oxide (ITO) Substrate

  • Li, Wan-Chao;Lee, Sang-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1133-1137
    • /
    • 2011
  • Ordered array of gold nanoparticles (Au NPs) over ITO glass was investigated in terms of ITO pretreatment, particle size, and diamines with different chain length. Owing to the indium-tin-oxide (ITO) layer coated on the glass, the substrate surface has a limited number of hydroxyl groups which can produce functionalized amine groups for Au binding, which resulted in the loosely-packed array of Au NPs on the ITO surface. Diamine ligand as a molecular linker was introduced to enhance the lateral binding of adjacent Au NPs immobilized on the amine-functionalized ITO glass, consequently leading to the densely-packed array of Au NPs over the ITO substrate. The molecular bridging effect was strengthened with the increase of chain length of diamines: C-12 > C-8. The packing density of small Au NPs (< 40 nm) was significantly increased with the increase of C-8 diamine, but large Au NPs (> 60 nm) did not produce densely-packed array on the ITO glass even for the dosage of C-12 diamine.

The Influence of Surface Modification of Gold Nanoparticles Supported on TiO2 in the Catalytic Activity of CO Oxidation

  • Park, Da-Hee;Reddy, A.S.;Eah, Sang-Kee;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.213-213
    • /
    • 2011
  • Gold catalysts supported on TiO2 have shown a unique catalytic behavior on CO oxidation, depending on surface effects. Particle size has an influence on the surface activity. To make monodisperse Au nanoparticles, organic capping ligands, such as alkylthiols, were used by a "greener" synthesis method [1,2] and Au nanoparticles were deposited on TiO2. However, organic capping ligands must be removed for high catalytic activities by the Au nanoparticles without changing the Au size [3]. We used UV ozone treatment to decompose thiol ligands. The samples have been characterized by X-ray photoelectron spectroscopy to examine the surface modification by UV ozone treatment. We show the size distribution of the gold nanoparticles by light scattering analysis and transmission electron microscopy. Au/TiO2 have been prepared using the wetness impregnation method. The catalytic performance of CO oxidation over Au supported on TiO2 under oxidizing reaction conditions (40 Torr CO and 100 Torr O2) were tested. The results show that the catalytic activity depends on particle size and the time of UV ozone exposure, which suggests the role of sulfur bonding in determining the catalytic activity of Au/TiO2 catalysts.

  • PDF

Plasmonic effects and size relation of gold-platinum alloy nanoparticles

  • Jawad, Muhammad;Ali, Shazia;Waseem, Amir;Rabbani, Faiz;Amin, Bilal Ahmad Zafar;Bilal, Muhammad;Shaikh, Ahson J.
    • Advances in nano research
    • /
    • 제7권3호
    • /
    • pp.169-180
    • /
    • 2019
  • Plasmonic effects of gold and platinum alloy nanoparticles (Au-Pt NPs) and their comparison to size was studied. Various factors including ratios of gold and platinum salt, temperature, pH and time of addition of reducing agent were studied for their effect on particle size. The size of gold and platinum alloy nanoparticles increases with increasing concentration of Pt NPs. Temperature dependent synthesis of gold and platinum alloy nanoparticles shows decrease in size at higher temperature while at lower temperature agglomeration occurs. For pH dependent synthesis of Au-Pt nanoparticles, size was found to be increased by increase in pH from 4 to 10. Increasing the time of addition of reducing agent for synthesis of pure and gold-platinum alloy nanoparticles shows gradual increase in size as well as increase in heterogeneity of nanoparticles. The size and elemental analysis of Au-Pt nanoparticles were characterized by UV-Vis spectroscopy, XRD, SEM and EDX techniques.

티오말산을 착화제로 하고 아미노에탄티올을 환원제로 하는 비시안계 무전해 Au 도금액의 석출 거동 및 도금 특성 (Deposition behavior of cyanide-free electroless Au plating solution using thiomalic acid as complexing agent and aminoethanethiol as reducing agent and characteristics of plated Au film)

  • 한재호;김동현
    • 한국표면공학회지
    • /
    • 제55권2호
    • /
    • pp.102-119
    • /
    • 2022
  • Gold plating is used as a coating of connecter in printed circuit boards, ceramic integrated circuit packages, semiconductor devices and so on, because the film has excellent electric conductivity, solderability and chemical properties such as durability to acid and other chemicals. As increasing the demand for miniaturization of printed circuit boards and downsizing of electronic devices, several types of electroless gold plating solutions have been developed. Most of these conventional gold plating solutions contain cyanide compounds as a complexing agent. The gold film obtained from such baths usually satisfies the requirements for electronic parts mentioned above. However, cyanide bath is highly toxic and it always has some possibility to cause serious problems in working environment or other administrative aspects. The object of this investigation was to develop a cyanide-free electroless gold plating process that assures the high stability of the solution and gives the excellent solderability of the deposited film. The investigation reported herein is intended to establish plating bath composition and plating conditions for electroless gold plating, with thiomalic acid as a complexing agent. At the same time, we have investigated the solution stability against nickel ion and pull strength of solder ball. Furthermore, by examining the characteristics of the plated Au plating film, the problems of the newly developed electroless Au plating solution were improved and the applicability to various industrial fields was examined. New type electroless gold-plating bath which containing thiomalic acid as a complexing agent showing so good solution stability and film properties as cyanide bath. And this bath shows the excellent stability even if the dissolved nickel ion was added from under coated nickel film, which can be used at the neutral pH range.

Ion Beam을 이용한 사파이어($Al_2O_3$) 표면개질 및 금(Au) 박막증착: 접합성 향상 및 접학기구에 대한 연구 (Ion beam induced surface modifications of sapphire and gold film deposition: studies on the adhesion enhancement and mechanisms)

  • 박재원;이광원;이재형;최병호
    • 한국진공학회지
    • /
    • 제8권4B호
    • /
    • pp.514-518
    • /
    • 1999
  • Gold (Au) is not supposed to react with sapphire(single crystalline ) under thermodynamic equillibrium, therefore, a strong adhesion between these two dissimilar materials is not expected. However, pull test showed that the gold film sputter-deposited onto annealed and pre-sputtered sapphire exhibited very strong adhesion even without post-deposition annealing. Strongly and weakly adhered samples as a result of the pull testing were selected to investigate the adhesion mechanisms with Auger electron spectroscopy. The Au/ interfaces were analyzed using a new technique that probes the interface on the film using Auger electron escape depth. It revealed that one or two monolayers of Au-Al-O compound formed at the Au/Sapphire interface when AES in the UHV chamber. It showed that metallic aluminum was detected on the surface of sapphire substrates after irradiating for 3 min. with 7keV Ar+ -ions. These results agree with TRIM calculations that yield preferential ion-beam etching. It is concluded that the formation of Au-Al-O compound, which is responsible for the strong metal-ceramic bonding, is due to ion-induced cleaning and reduction of the sapphire surface, and the kinetic energy of depositing gold atoms, molecules, and micro-particles as a driving force for the inter-facial reaction.

  • PDF

Biogenic Nano-Synthesis; towards the Efficient Production of the Biocompatible Gold Nanoparticles

  • Ghodake, Gajanan;Eom, Chi-Yong;Kim, Si-Wouk;Jin, Eon-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2771-2775
    • /
    • 2010
  • We present a rapid biogenic method for the production of nanoscale gold particles using pear extract. The formation and stability of pear-derived gold nanoparticles (Pear-AuNPs) were monitored by ultraviolet-visible spectroscopy. Their morphology, elemental composition and crystalline phase were determined by transmission electron microscopy, energy-dispersive X-ray spectroscopy and selected area electron diffraction. The average core size of crystalline Pear-AuNPs was in the range of $10{\pm}5\;nm$ and the observed morphology was spherical. The X-ray photoelectron spectrum showed a strong peak for the pure 'Au' phase. The circular dichroism spectrum indicated the natural capping ability of the pear extract, which generated peptide-gold nanoparticles. These nanoparticles were stable in aqueous solution for two months. A cell viability assay of Pear-AuNPs showed biocompatibility with human embryonic kidney 293 cells. Accordingly, this eco-friendly process for the bio-mimetic production of Pear-AuNPs is nontoxic in nature; consequently, it will find potential application in nano-biotechnology.

한국(韓國) 남서부(南西部)의 덕음(德蔭)과 전주(全州)-금은광상(金銀鑛床)에 대(對)한 암석지구화학적(岩石地球化學的) 연구(硏究) (Lithogeochemistry on the Dukum and Jeonjuil gold - silver deposits in Southern - western part of Korea)

  • 윤정한;전용원;전효택
    • 자원환경지질
    • /
    • 제21권4호
    • /
    • pp.389-400
    • /
    • 1988
  • Minor elements such as Ag, As, Au, Bi, Cd, Cu, Co, Ni, Pb, Rb, Sb, Sr and Te were analyzed by atomic absorption spectrophotometry and induced coupled plasma spectrophotometry in order to investigate pathfinders for gold in quartz porphyry, granite porphyry and vein materials in Jeonjuil gold - silver mine, and in altered biotite granites and vein materials in Dukum gold - silver mine. In Dukum gold - silver mine, it is observed that Au contents have positive relation with As, Co, and Rb contents, but negative relation with Bi contents in altered biotite granites. Au contents have positive relation with Ag, As, Co and Te contents in vein materials. In Jeonjuil gold - silver mine, it is observed that Cd, Rb, Sr and Te are enriched near ore vein in quartz porphyry and granite porphyry. Au contents have positive relation with As, Cd, Cu, $Fe_2O_3$ and $K_2O$ in vein materials.

  • PDF

A Facile Method for Micropatterning of Gold Nanoparticles Immobilized on UV Cross-linked Polymer Thin Films

  • Kim, Min-Sung;Jeong, Yeon-Tae
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권3호
    • /
    • pp.85-88
    • /
    • 2009
  • This report demonstrates the immobilization of uniformly sized gold nanoparticles (AuNPs) on UV cross-linked poly(4-vinylpyridine) (P4VP) polymer thin films and the preparation of micropatterned structures of AuNPs on these films. The polymer thin films were prepared by a spin-coating of P4VP onto a cleaned silicon wafer surface. Upon UV irradiation, these films were then photo cross-linked. Gold nanoparticles were immobilized by immersing the polymer surface in a colloidal solution of gold nanoparticles stabilized by citric acid. The morphology of the films and the immobilization of AuNPs were studied by atomic force microscopy (AFM) and UV-visible spectroscopic techniques. The micropatterned gold structures that were produced on the polymer surface are delineated by combining with the photolithographic method. While untreated and simply spin coated films were physisorbed and unstable that could be easily removed by rinsing with a solvent, the cross-linked and AuNPs immobilized P4VP films were found to be highly stable even after repeated solvent extractions.

Investigating the Au-Cu thick layers Electrodeposition Rate with Pulsed Current by Optimization of the Operation Condition

  • Babaei, Hamid;Khosravi, Morteza;Sovizi, Mohamad Reza;Khorramie, Saeid Abedini
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권2호
    • /
    • pp.172-179
    • /
    • 2020
  • The impact of effective parameters on the electrodeposition rate optimization of Au-Cu alloy at high thicknesses on the silver substrate was investigated in the present study. After ensuring the formation of gold alloy deposits with the desired and standard percentage of gold with the cartage of 18K and other standard karats that should be observed in the manufacturing of the gold and jewelry artifacts, comparing the rate of gold-copper deposition by direct and pulsed current was done. The rate of deposition with pulse current was significantly higher than direct current. In this process, the duty cycle parameter was effectively optimized by the "one factor at a time" method to achieve maximum deposition rate. Particular parameters in this work were direct and pulse current densities, bath temperature, concentration of gold and cyanide ions in electrolyte, pH, agitation and wetting agent additive. Scanning electron microscopy (SEM) and surface chemical analysis system (EDS) were used to study the effect of deposition on the cross-sections of the formed layers. The results revealed that the Au-Cu alloy layer formed with concentrations of 6gr·L-1 Au, 55gr·L-1 Cu, 24 gr·L-1 KCN and 1 ml·L-1 Lauryl dimethyl amine oxide (LDAO) in the 0.6 mA·cm-2 average current density and 30% duty cycle, had 0.841 ㎛·min-1 Which was the highest deposition rate. The use of electrodeposition of pure and alloy gold thick layers as a production method can reduce the use of gold metal in the production of hallow gold artifacts, create sophisticated and unique models, and diversify production by maintaining standard karats, hardness, thickness and mechanical strength. This will not only make the process economical, it will also provide significant added value to the gold artifacts. By pulsating of currents and increasing the duty cycle means reducing the pulse off-time, and if the pulse off-time becomes too short, the electric double layer would not have sufficient growth time, and its thickness decreases. These results show the effect of pulsed current on increasing the electrodeposition rate of Au-Cu alloy confirming the previous studies on the effect of pulsed current on increasing the deposition rate of Au-Cu alloy.

Cancer-targeted photothermal therapy using aptamer-conjugated gold nanoparticles

  • Hong, Eun Ji;Kim, Yoon-Seok;Choi, Dae Gun;Shim, Min Suk
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.429-436
    • /
    • 2018
  • Targeted intracellular delivery of therapeutic agents is one of the great challenges for cancer treatment. Aptamers that bind to a variety of biological targets have emerged as new targeting moieties with high specificity for targeted cancer therapy. In this study, near-infrared (NIR) light-absorbing hollow gold nanocages (AuNCs) were synthesized and conjugated with AS1411 aptamer to achieve cancer-targeted photothermal therapy. AuNC functionalized with PEG and AS1411 (AS1411-PEG-AuNC) exhibited selective cellular uptake in breast cancer cells due to selective binding of AS1411 to nucleolin, a protein that is over-expressed in cancer cells over normal cells. As a result, AS1411-PEG-AuNC showed cancer-targeted photothermal activity. This study demonstrates that aptamer-conjugated AuNCs are effective tumor-targeting photothermal agents.