• Title/Summary/Keyword: goblet cell hyperplasia

Search Result 26, Processing Time 0.033 seconds

Intestinal mastocytosis and goblet cell hyperplasia in BALB/e and C3H mice infected with Neodiplostomum seoulLense (서울주걱흡충 감염 BALB/c 및 C3H 마우스에서 장점막 비만세포 및 배세포의 증식)

  • 채종일;김태규
    • Parasites, Hosts and Diseases
    • /
    • v.36 no.2
    • /
    • pp.109-120
    • /
    • 1998
  • Mucosal mast cell (MMC) and goblet cell (GC) responses were observed in the small intestine of two strains of mice (BALBfc and C3H) infected with Weodiplostomum seouLehTe, and their roles in the host defense and worm expulsion were studied. From day 3 to 28 post-infection (Pl) with 200 metacercariae, the worm recovery rate from BALB/c mice was consistently and remarkably higher than that from C3H mice. In the duodenum of both strains of mice, the main habitat of the flukes, mastocytosis was pronounced on day 7 Pl but quickly diminished thereafter. Similar kinetics were observed in the jejunum and ileum, although the extent of mastocytosis was lesser in the ileum than other two areas. These MMC kinetics were not different between the ko strains of mice. Moreover, the extent of mastocytosis was stronger in BALB/C mice than in C3H mice. GC hyperplasia was remarkable in the duodenum of BALBlc mice throughout the course of infection except day 14 Pl, whereas it was recognizable only in the jejunum and ileum of C3H mice on day 7 Pl. Mucin activation was evidently demonstrated in both strains of mice throughout the course of infection, but more marked in BALB/c than in C3H mice. The results strongly suggest that mastocytosis and GC hyperplasia are local immune responses against N. seoulense, however, they play a minor role in the host defense and worm expulsion.

  • PDF

Effects of Cheongjogupye-tang(淸燥救肺湯) and Yieum-jeon(理陰煎) on Secretion of Mucin from Respiratory Epithelial Cells (청조구폐탕(淸燥救肺湯)과 이음전(理陰煎)이 호흡기 접액분비에 미치는 영향)

  • Park, Wan-Yeol;Seo, Un-Kyo
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.318-333
    • /
    • 2008
  • Objectives : In this study, the author tried to examine whether Cheogjogupye-tang (淸燥救肺湯, CGPT) and Yieum-jeon (理陰煎, YEJ) significantly affect in vitro and in vivo mucin secretion, MUC5AC gene expression in airway epithelial cells and contractility of isolated tracheal smooth muscle of rabbit. Materials and Methods : For in vitro experiment, confluent hamster tracheal surface epithelial (HTSE) cells were chased for 30 minutes in the presence of CGPT and YEJ to assess the effects of the agents on mucin secretion by enzyme-linked immunosorbent assay (ELISA), with removal of oriental herbal medicine extract from each agent-treated sample by centrifuge microfilter. Also, the effects of the agents on TNF-alpha or EGF-induced MUC5AC gene expression in human airway epithelial cells (NCI-H292) were investigated. Possible cytotoxicities of the agent were assessed by examining both LDH release from HTSE cells and the rate of survival and proliferation of NCI-H292 cells. For in vivo experiment, hypersecretion of airway mucin and goblet cell hyperplasia was induced by exposure of rats to $SO_2$ over 3 weeks. Effects of CGPT and YEJ orally administered for 1 week on in vivo mucin secretion from tracheal goblet cells of rats and hyperplasia of goblet cells were assessed using ELISA and histological analysis after staining the epithelial tissue with alcian blue, respectively. Also, the effects of CGPT and YEJ on contractility of isolated tracheal smooth muscle were investigated. Results : (1) CGPT significantly inhibited in vitro mucin secretion from cultured HTSE cells. However, YEJ did not affect in vitro mucin secretion; (2) CGPT and YEJ did not affect hypersecretion of in vivo mucin and hyperplasia of tracheal goblet cells; (3) CGPT and YEJ slightly increased the expression levels of TNF-alpha or EGF-induced MUC5AC gene in NCI-H292 cells; (4) CGPT and YEJ inhibited acetylcholine-induced contraction of isolated tracheal smooth muscle of rabbit; (5) CGPT and YEJ did not affect LDH release from HTSE cells and the survival and proliferation of NCI-H292 cells. Conclusion : The results from the present study suggest that CGPT and YEJ mainly affect the expression of mucin gene rather than secretion of mucin and do not show remarkable cytotoxicity to respiratory epithelial cells.

  • PDF

Effect of Wood Vinegar Produced from Morus alba on Hypersecretion of Airway Mucus (상지(桑枝) 목초액이 호흡기 객담 과다분비에 미치는 영향)

  • Kim, Ho;Jung, Hye-Mi;Kim, Sol-Li;Seo, Un-Kyo
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.3
    • /
    • pp.650-666
    • /
    • 2010
  • Objectives : In this study, the author tried to investigate whether wood vinegar produced from Morus alba (MA) significantly affects the increase in airway epithelial mucosubstances and hyperplasia of tracheal goblet cells of rats, and in vitro airway mucin secretion and PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production / gene expression from human airway epithelial cells. Materials and Methods : For the in vivo experiment, the author induced hypersecretion of airway mucus and goblet cell hyperplasia by exposure of rats to SO2 over 3 weeks. Effect of orally-administered MA over 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats and hyperplasia of goblet cells were assessed using histopathological analysis after staining the epithelial tissue with alcian blue. For the in vitro experiment, confluent RTSE cells were chased for 30 min in the presence of MA to assess the effect of MA on mucin secretion by enzyme-linked immunosorbent assay (ELISA). Also, effects of MA on PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of MA and treated with PMA (10 ng/ml), EGF (25 ng/ml) or TNF-alpha (0.2 nm) for 24 hrs, to assess both effects of MA on PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production by enzyme-linked immunosorbent assay (ELISA) and gene expression by reverse transcription-polymerase chain reaction (RT-PCR). Possible cytotoxicities of MA in vitro were assessed by examining LDH release from RTSE cells and the rate of survival and proliferation of NCI-H292 cells. In vivo liver and kidney toxicities of MA were evaluated by measuring serum GOT/GPT activities and serum BUN/creatinine concentrations of rats after administering MA orally. Results : 1. MA decreased the amount of intraepithelial mucosubstances of rats exposed to sulfur dioxide inhalationally. 2. MA decreased in vitro mucin secretion from cultured RTSE cells. 3. MA significantly inhibited PMA-, EGF-, and TNF-alpha-induced MUC5AC mucin productions and the expression levels of MUC5AC mRNA from NCI-H292 cells. 4. MA did not show either in vitro or in vivo hepatic or renal toxicities. Conclusion : The results from this study suggests that MA can regulate the secretion, production and gene expression of airway mucin observed in diverse respiratory diseases accompanied by mucus hypersecretion and does not show in vivo toxicity to liver and kidney functions after oral administration. Effects of MA should be further studied using animal experimental models that simulate the diverse pathophysiology of respiratory diseases via future research.

Effect of Piryongbanggamgil-tang on Airway Mucin Secretion, Production, Gene Expression and Hypersecretion of Mucus (필용방감길탕이 기도 뮤신의 분비, 생성, 유전자 발현 및 점액 과다 분비에 미치는 영향)

  • Kim, Yoon Young;Min, Sang Yeon;Kim, Jang Hyun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.28 no.2
    • /
    • pp.56-71
    • /
    • 2014
  • Objectives In this study, the author tried to investigate whether piryongbang-gamgil-tang (PGGT) significantly affect in vitro airway mucin secretion, PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production / gene expression from human airway epithelial cells and increase in airway epithelial mucosubstances and hyperplasia of tracheal goblet cells of rats. Materials and Methods For in vitro experiment, confluent RTSE cells were chased for 30 min in the presence of PGGT to assess the effect of PGGT on mucin secretion by enzyme-linked immunosorbent assay (ELISA). Also, effect of PGGT on PMA- or EGFor TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of PGGT and treated with PMA (10 ng/ml) or EGF (25 ng/ml) or TNF-${\alpha}$ (0.2 nM) for 24 hrs, to assess both effect of PGGT on PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production by ELISA and gene expression by reverse transcription-polymerase chain reaction (RT-PCR). For in vivo experiment, the author induced hypersecretion of airway mucus and goblet cell hyperplasia by exposure of rats to $SO_2$ during 3 weeks. Effect of orally-administered PGGT during 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats and hyperplasia of goblet cells were assesed by using histopathological analysis after staining the epithelial tissue with alcian blue. Possible cytotoxicities of PGGT in vitro were assessed by examining LDH release from RTSE cells and the rate of survival and proliferation of NCI-H292 cells. In vivo liver and kidney toxicities of PGGT were evaluated by measuring serum GOT/GPT activities and serum BUN/creatinine concentrations of rats after administering PGGT orally. Results (1) PGGT did not affect in vitro mucin secretion from cultured RTSE cells. (2) PGGT significantly inhibited PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin productions and the expression levels of MUC5AC mRNA from NCI-H292 cells. (3) PGGT decreased the amount of intraepithelial mucosubstances and showed the tendency of expectorating airway mucus already produced. (4) PGGT increased LDH release from RTSE cells. However, PGGT did not show in vivo liver and kidney toxicities and cytotoxicity to NCI-H292 cells. Conclusion The result from this study suggests that PGGT can regulate the production and gene expression of airway mucin observed in diverse respiratory diseases accompanied by mucus hypersecretion and do not show in vivo toxicity to liver and kidney functions after oral administration. Effect of PGGT with their components should be further studied using animal experimental models that reflect the diverse pathophysiology of respiratory diseases through future investigations.

Airway Remodelling in Asthma (기관지 천식에서의 기도 개형)

  • Lim, Dae Hyun
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.10
    • /
    • pp.1038-1049
    • /
    • 2005
  • Asthma is characterized by a chronic inflammatory disorder of the airways that leads to tissue injury and subsequent structural changes collectively called airway remodelling. Characteristic changes of airway remodelling in asthma include goblet cell hyperplasia, deposition of collagens in the basement membrane, increased number and size of microvessels, hypertrophy and hyperplasia of airway smooth muscle, and hypertrophy of submucosal glands. Apart from inflammatory cells, such as eosinophils, activated T cells, mast cells and macrophages, structural tissue cells such as epithelial cells, fibroblasts and smooth muscle cells can also play an important effector role through the release of a variety of mediators, cytokines, chemokines, and growth factors. Through a variety of inflammatory mediators, epithelial and mesenchymal cells cause persistence of the inflammatory infiltrate and induce airway structural remodelling. The end result of chronic airway inflammation and remodelling is an increased thickness of the airway wall, leading to a increased the bronchial hyperresponsiveness and fixed declined lung function.

Effect of Gamitonggyu-tang on Secretion of Airway Mucin and Contractility of Tracheal Smooth Muscle (가미통규탕(加味通竅湯)이 호흡기 뮤신 분비 및 기관 평활근 긴장도에 미치는 영향)

  • Lee, Nam-Yeol;Han, Jae-Kyung;Kim, Yun-Hee
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.109-124
    • /
    • 2007
  • Objectives In the present study, the author intended to investigate whether Gamitonggyu-tang (GTT) significantly affects (since the subject is GTT, you need an 's') in vivo and in vitro mucin secretion from airway epithelial cells. Methods In vivo experiment, mice's mucin which is on a hypersecretion of an airway, mice's tracheal goblet cells in hyperplasia and mice's intraepithelial mucosubstances were exposed with SO2 for 3 weeks. Effects of orally-administered GTT for 1 week on in vivo mucin secretion and hyperplasia of tracheal goblet cells were assessed by using enzyme-linked immunosorbent assay (ELISA) and staining goblet cells with alcian blue. In vitro experiment, confluent hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled with 3H-glucosamine for 24 hrs and chased for 30 min in the presence of GTT to figure out the effectiveness of 3H-mucin secretion. Total elution profiles of control spent media and treatment sample through Sepharose CL-4B column were analyzed.Possible cytotoxicities of each agent were assessed by measuring lactate dehydrogenase (LDH) release. Also, the effect of GTT on contractility of isolated tracheal smooth muscle was investigated. Results (1) GTT inhibited hypersecretion of in vivo mucin. However, it did not affect the increase the number of goblet cells (2) GTT significantly increased mucin release from cultured HTSE cells, without significant cytotoxicity (3) GTT chiefly affected the 'mucin' secretion and did not affect the secretion of the other releasable glycoproteins with less molecular weight than mucin (4) GTT did not affect Ach-induced contraction of isolated tracheal smooth muscle.Conclusions This result suggests that GTT can increase mucin secretion during short-term treatment (in vitro) whereas it can inihibit hypersecretion of mucin during long-term treatment (in vivo). The author suggests that the effect GTT with their components should be further investigated and it is valuable to find from oriental medical prescriptions, novel agents which might regulate mucin secretion from airway epithelial cells.

  • PDF

Study of a BALB/c Mouse Model for Allergic Asthma

  • Yang, Young-Su;Yang, Mi-Jin;Cho, Kyu-Hyuk;Lee, Kyu-Hong;Kim, Yong-Bum;Kim, Jin-Sung;Kang, Myung-Gyun;Song, Chang-Woo
    • Toxicological Research
    • /
    • v.24 no.4
    • /
    • pp.253-261
    • /
    • 2008
  • Allergic asthma is a worldwide public health problem and a major socioeconomic burden disease. It is a chronic inflammatory disease marked by airway eosinophilia and goblet cell hyperplasia with mucus hypersecretion. Mouse models have proven as a valuable tool for studying human asthma. In the present report we describe a comparison of mouse asthma models. The experiments were designed as follows: Group I was injected with ovalbumin (OVA, i.p.) on day 1 and challenged with 1% OVA (aerosol exposure) on days $14{\sim}21$. Group II was injected on day 1, 14 and aerosol-immunized on days $14{\sim}21$. Group III was injected on day 1, 14 and immunized by 1% OVA aerosol on days $18{\sim}21$. We assessed asthma induction by determining the total number of white blood cells (WBC) and eosinophils as well as by measuring cytokine levels in bronchoalveolar lavage fluid (BALF). In addition, we evaluated the histopathological changes of the lungs and determined the concentration of immunoglobulin E (IgE) in serum. Total WBC, eosinophils, Th2 cytokines (IL-4, IL-13) and IgE were significantly increased in group I relative to the other groups. Moreover, histopathological studies show that group I mice show an increase in the infiltration of inflammatory cell-in peribronchial and perivascular areas as well as an overall increase in the number of mucus-containing goblet cells relative to other groups. These data suggest that group I can be a useful model for the study of human asthma pathobiology and the evaluation of existing and novel therapeutic agents.

Enhancement of Allergen-induced Airway Inflammation by NOX2 Deficiency

  • Won, Hee-Yeon;Jang, Eun-Jung;Min, Hyun-Jung;Hwang, Eun-Sook
    • IMMUNE NETWORK
    • /
    • v.11 no.3
    • /
    • pp.169-174
    • /
    • 2011
  • Background: NADPH oxidase (NOX) modulates cell proliferation, differentiation and immune response through generation of reactive oxygen species. Particularly, NOX2 is recently reported to be important for regulating Treg cell differentiation of CD4+ T cells. Methods: We employed ovalbumin-induced airway inflammation in wild-type and NOX2-deficient mice and analyzed tissue histopathology and cytokine profiles. Results: We investigated whether NOX2-deficiency affects T cell-mediated airway inflammation. Ovalbumin injection which activates T cell-mediated allergic response increased airway inflammation in wild-type mice, as evidenced by increased immune cell infiltration, allergic cytokine expression, and goblet cell hyperplasia in the lung. Interestingly, NOX2 knockout (KO) mice were more susceptible to allergen-induced lung inflammation compared to wild-type mice. Immune cells including neutrophils, lymphocytes, macrophages, and eosinophils were drastically infiltrated into the lung of NOX2 KO mice and mucus secretion was substantially increased in deficiency of NOX2. Furthermore, inflammatory allergic cytokines and eotaxin were significantly elevated in NOX2 KO mice, in accordance with enhanced generation of inflammatory cytokines interleukin-17 and interferon-${\gamma}$ by CD4+ T cells. Conclusion: These results indicate that NOX2 deficiency favorably produces inflammatory cytokines by T cells and thus increases the susceptibility to severe airway inflammation.

Effects of Agastachis Herba extract on OVA-induced allergic asthma in mice (곽향(藿香)의 난알부민으로 유도된 천식 마우스에서의 천식개선 효능연구)

  • Kang, Seok Yong;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.30 no.3
    • /
    • pp.1-12
    • /
    • 2015
  • Objectives : In this study, we investigated the effects of Agastachis Herba water (AH-W) extract on compound 48/80-induced mast cell degranulation and histamine release in human mast cells and also anti-asthmatic effect of AH-W extract on ovalbumin (OVA)-induced asthma in mice. Methods : Human mast cells, HMC-1 were treated with AH-W extract in the presence or absence of compound 48/80 (C48/80). Mast cell degranulation was observed by microscope, and the histamine release was measured in culture medium by ELISA. For preparation of asthmatic in vivo model, mice were sensitized (0, 7, and 14 days) with OVA and airway challenged (21, 23, 25, 27, and 29 days). AH-W extract at doses of 100 and 300 mg/kg/body weight was orally administered during OVA challenge once per a day. The levels of immunoglobulin (Ig) E, and Th1/Th2 cytokines, IFN-$\gamma$ and IL-4 were measured in the sera of mice by ELISA. The histopathological change of lung tissues was observed by hematoxylin and eosin (H&E) and Periodic Acid Schiff (PAS) staining. Results : The treatment of AH-W extract significantly decreased the mast cell degranulation and histamine release in C48/80-stimulated HMC-1 cells. In addition, The administration of AH-W extract at does of 100 and 300 mg/kg significantly decreased the serum levels of OVA-specific IgE compared with those of OVA control group. In H&E and PAS staining, AH-W extract inhibited OVA-induced airway inflammation, and inflammatory cells infiltration, and also histopathological damages on lung tissues such as bronchiole epithelial desquamation, goblet cells hyperplasia, and mucin releasing. Conclusions : These results indicate that AH-W extract may improve asthmatic symptoms through mast cell stabilization and inhibiting the lung inflammation in bronchial asthma.

Free-Living Amoeba Vermamoeba vermiformis Induces Allergic Airway Inflammation

  • Lee, Da-In;Park, Sung Hee;Kang, Shin-Ae;Kim, Do Hyun;Kim, Sun Hyun;Song, So Yeon;Lee, Sang Eun;Yu, Hak Sun
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.4
    • /
    • pp.229-239
    • /
    • 2022
  • The high percentage of Vermamoeba was found in tap water in Korea. This study investigated whether Vermamoeba induced allergic airway inflammation in mice. We selected 2 free-living amoebas (FLAs) isolated from tap water, which included Korean FLA 5 (KFA5; Vermamoeba vermiformis) and 21 (an homolog of Acanthamoeba lugdunensis KA/E2). We axenically cultured KFA5 and KFA21. We applied approximately 1×106 to mice's nasal passages 6 times and investigated their pathogenicity. The airway resistance value was significantly increased after KFA5 and KFA21 treatments. The eosinophil recruitment and goblet cell hyperplasia were concomitantly observed in bronchial alveolar lavage (BAL) fluid and lung tissue in mice infected with KFA5 and KFA21. These infections also activated the Th2-related interleukin 25, thymic stromal lymphopoietin, and thymus and activation-regulated chemokines gene expression in mouse lung epithelial cells. The CD4+ interleukin 4+ cell population was increased in the lung, and the secretion of Th2-, Th17-, and Th1-associated cytokines were upregulated during KFA5 and KFA21 infection in the spleen, lung-draining lymph nodes, and BAL fluid. The pathogenicity (allergenicity) of KFA5 and KFA21 might not have drastically changed during the long-term in vitro culture. Our results suggested that Vermamoeba could elicit allergic airway inflammation and may be an airway allergen.