Browse > Article
http://dx.doi.org/10.5487/TR.2008.24.4.253

Study of a BALB/c Mouse Model for Allergic Asthma  

Yang, Young-Su (Division of Inhalation Toxicology, Jeongeup Campus)
Yang, Mi-Jin (Division of Inhalation Toxicology, Jeongeup Campus)
Cho, Kyu-Hyuk (Division of Inhalation Toxicology, Jeongeup Campus)
Lee, Kyu-Hong (Division of Inhalation Toxicology, Jeongeup Campus)
Kim, Yong-Bum (Division of Toxicological Pathology)
Kim, Jin-Sung (Division of Inhalation Toxicology, Jeongeup Campus)
Kang, Myung-Gyun (Division of Toxicology, Korea institute of Toxicology)
Song, Chang-Woo (Division of Inhalation Toxicology, Jeongeup Campus)
Publication Information
Toxicological Research / v.24, no.4, 2008 , pp. 253-261 More about this Journal
Abstract
Allergic asthma is a worldwide public health problem and a major socioeconomic burden disease. It is a chronic inflammatory disease marked by airway eosinophilia and goblet cell hyperplasia with mucus hypersecretion. Mouse models have proven as a valuable tool for studying human asthma. In the present report we describe a comparison of mouse asthma models. The experiments were designed as follows: Group I was injected with ovalbumin (OVA, i.p.) on day 1 and challenged with 1% OVA (aerosol exposure) on days $14{\sim}21$. Group II was injected on day 1, 14 and aerosol-immunized on days $14{\sim}21$. Group III was injected on day 1, 14 and immunized by 1% OVA aerosol on days $18{\sim}21$. We assessed asthma induction by determining the total number of white blood cells (WBC) and eosinophils as well as by measuring cytokine levels in bronchoalveolar lavage fluid (BALF). In addition, we evaluated the histopathological changes of the lungs and determined the concentration of immunoglobulin E (IgE) in serum. Total WBC, eosinophils, Th2 cytokines (IL-4, IL-13) and IgE were significantly increased in group I relative to the other groups. Moreover, histopathological studies show that group I mice show an increase in the infiltration of inflammatory cell-in peribronchial and perivascular areas as well as an overall increase in the number of mucus-containing goblet cells relative to other groups. These data suggest that group I can be a useful model for the study of human asthma pathobiology and the evaluation of existing and novel therapeutic agents.
Keywords
Asthma; Mouse; Eosinophil; Immunoglobulin E; Cytokine; Model;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Armin, B., Thomas, T. and David, A.G. (2008). Editorial: Experimental models of asthma. J. Occu. Med. and Toxicol., 3, Suppl 1, S1   DOI   ScienceOn
2 Blanchard, C., Mishra, A., Saito-Akei, H., Monk, P., Anderson, I. and Rothenberg, M.E. (2005). Inhibition of human interleukin- 13-induced respiratory and esophageal inflammation by anti-human interleukin-13 antibody (CAT-354). Clin. Exp. Allergy, 35, 1096-1103   DOI   ScienceOn
3 Cho, J.Y., Miller, M., Baek, K.J., Han. J.W., Nayar, J., Lee, S.Y., McElwain, K., McElwain, S., Friedman, S. and Broide, D.H. (2004). Inhibition of airway remodeling in IL-5 deficient mice. J. Clin. Invest., 113, 551-560   DOI   ScienceOn
4 Fred Wonga, W.S., Hua, Z. and Wupeng, L. (2007). Cysteinyl leukotriene receptor antagonist MK-571 alters bronchoalveolar lavage fluid proteome in a mouse asthma model. Euro. J. Phar., 575, 134-141   DOI   ScienceOn
5 Hamid, Q., Tulic, M.K., Liu, M.C. and Moqbel, R. (2003). Inflammatory cells in asthma: mechanisms and implications for therapy. J. Allergy Clin. Immunol., 111, S5-S17   DOI   ScienceOn
6 Heo, Y. and Kim, K.H. (2002). Development of subacute animal model to predict occurance of systemic anaphylaxis following vaccination and evaluation of various immunotoxicological parameters. J. Toxicol. Pub. Health, 18, 205- 213
7 Kasaian, M.T., Donaldson, D.D., Tchistiakova, L., Marquette, K., Tan, X.Y., Ahmed, A., Jacobson, B.A., Widom, A., Cook, T.A., Xu, X., Barry, A.B., Goldman, S.J. and Abraham, W.M. (2007). Efficacy of IL-13 neutralization in a sheep model of experimental asthma. Am. J. Respir. Cell. Mol. Biol. 36, 368-376   DOI   ScienceOn
8 Martin, L.B., Kita, H., Leiferman, K.M. and Gleich, G.J. (1996). Eosinophils in allergy: role in disease, degranulation and cytokines. Int. Arch. Allergy Immunol., 109, 207-215   DOI   ScienceOn
9 Owen, C.E. (2007). Immunoglobulin E: role in asthma and allergic disease: lessons from the clinic. Pharmacol. Ther., 113, 121-133   DOI   ScienceOn
10 Sofia, F.R., William, R.F., Kenneth, J.B. and Emma, J.K. (2008) Establishing the phenotype in novel acute and chronic murine models of allergic asthma. Internal. Immunopharmcol. 8, 756-763   DOI   ScienceOn
11 Tattersfield A.E., Knox, A.J., Britton, J.R. and Hall, I.P. (2002). Asthma. Lancet, 360, 1313-1322   DOI   ScienceOn
12 Temelkovski, J., Hogan, S.P., Shepherd, D.P., Foster, P.S. and Kumar, R.K. (1998). An improved murine model of asthma: selective airway inflammation, epithelial lesions and increased methacholine responsiveness following chronic exposure to aerosolised allergen. Thorax, 53, 849-856   DOI
13 Weiss, K.B. and Sullivan, S.D. (2001). The health economics of asthma and rhinitis. I. Assessing the economic impact. J. Allergy Clin. Immunol., 107, 3-8   DOI   ScienceOn
14 Yang, G., Volk, A., Petley, T., Emmell, E., Giles-Komar, J., Shang, X., Li, J., Das, A.M., Shealy, D., Griswold, D.E. et al. (2004). Anti-IL-13 monoclonal antibody inhibits airway hyperresponsiveness, inflammation and airway remodeling. Cytokine, 28, 224-232   DOI   ScienceOn
15 Kim, H.A. and Heo, Y. (2001). Significance of a highly specific and sensitive enzyme linked immunosorent assay on evaluation of environmental toxicant-mediated allergic responses. J. Toxicol. Pub. Health, 17, 197-199
16 De Weck, A.L., Mayer, P., Stumper, B., Schiessel, B. and Pickat, L. (1997). Dog allergy, a model for allergy genetics. Int. Arch. Allergy Immunol., 113, 55-57   DOI
17 Flood-Page, P., Menzies-Gow, A., Phipps, S., Ying, S., Wangoo, A., Ludwig, M.S., Barnes, N., Robinson, D. and Kay, A.B. (2003). Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J. Clin. Invest., 112, 1029-1036   DOI   ScienceOn
18 Meryl, H., Karol, J.M., Matheson, R.W., Lange, R.L. and Michael, I.L. (2001). Use of tumor necrosis factor receptor (TNFR)-knockout mice to probe the mechanism of chemically-induced asthma J. Toxicol. Pub. Health, 17, 305-307
19 El-Hashim, A.Z., Wyss, D. and Zuany-Amorim, C. (2002). Kinetics of airway hyperresponsiveness and airway eosinophilia in BALB/c mice and their modulation by different dexamethasone treatment regimens. Pulmonary pharmacol. & Thera., 15, 467-475   DOI   ScienceOn
20 Eric, R., Secor, J., William, F., Carson, I.V., Anurag, S., Mellisa, P., Linda, A., Guernsey, C.M., Schramm and Roger S.T. (2008) Oral bromelain attenuates inflammation in an ovalbumin- induced murine model of asthma. eCAM., 5, 61-69   DOI   ScienceOn
21 Kay, A.B., Barata, L., Meng, Q., Durham, S.R. and Ying, S. (1997). Eosinophils and eosinophil-associated cytokines in allergic inflammation. Int. Arch. Allergy Immunol., 113, 196-199   DOI
22 Toward, T.J., Smith, N. and Broadley, K.J. (2004). Effect of phosphodiesterase-5 inhibitor, sidenafil (Viagra), in animal models of airways disease. Am. J. Respir. Crit. Care Med., 169, 227-234   DOI   ScienceOn
23 Bousquet, J, Jeffery, P.K., Busse, W.W., Johnson, M. and Vignola, A.M. (2000). Asthma: from bronchoconstriction to airways inflammation and remodeling. Am. J. Respir. Crit. Care. Med., 161, 1720-1745   DOI   ScienceOn
24 Yang, G., Li, L., Volk, A., Emmell, E., Petley, T., Giles-Komar, J., Rafferty, P., Lakshminarayanan, M., Griswold, D.E., Bugelski, P.J. and Das, A.M. (2005). Therapeutic dosing with anti-interleukin-13 monoclonal antibody inhibits asthma progression in mice. J. Pharmacol. Exp. Ther., 313, 8-15
25 Rakesh, K.K., Cristna, H. and Paul, S.F. (2008) The "Classical" ovalbumin challenge model of asthma in mice. Current Drug Targets, 9, 485-494   DOI   ScienceOn
26 Torres, R., Picado, C. and Mora F. (2005). Use of the mouse to unravel allergic asthma: a review of the pathogenesis of allergic asthma in mouse models and its similarity to the condition in humans. Arch. Bronconeumol. 41, 141- 152   DOI   ScienceOn
27 Park, S.J., Shin, W.H., Seo, J.W. and Kim, E.J. (2007). Anthocyanins inhibit airway inflammation and hyperresponsiveness in a murine asthma model. Food and Chemical Toxicol., 45, 1459-1467   DOI   ScienceOn
28 Karol, M.H. (1994). Animal models of occupational asthma. Eur. Respir. J., 7, 555-568   DOI
29 Padrid, P. (1992). Chronic lower airway disease in the dog and cat. Probl. Vet. Med. 4, 320-344
30 Itoh, K., Takahashi, E., Mukaiyama, O., Sathoh, Y. and Yamaguchi, T. (1996). Relationship between airway eosinophilia and airway hyperresponsiveness in a late asthmatic model of guinea pigs. Int. Arch. Allergy Immunol., 109, 86-94   DOI   ScienceOn
31 Kips, J.C. (2001). Cytokines in asthma. Eur. Respir. J. Suppl., 34, 24-33
32 Hessel, E.M., Van Oosterhout, A.J., Hofstra, C.L., De Bie, J.J., Garssen, J., Van Loveren, H., et al. (1995). Bronchoconstriction and airway hyperresponsiveness after ovalbumin inhalation in sensitized mice. Eur. J. Pharmacol., 293, 401-412   DOI   ScienceOn
33 Johnson, P.R.A., Roth, M., Tamm, M., Hughes, M., Ge, Q., King, G., Burgess, J.K. and Black, J.L. (2001). Airway smooth muscle cell proliferation is increased in asthma. Am. J. Respir. Crit. Care Med., 164, 474-477   DOI   ScienceOn
34 Kumar, R.K. and Foster, P.S. (2002). Modeling allergic asthma in mice: pitfalls and opportunities. Am. J. Respir. Cell. Mol. Biol., 27, 267-272   DOI   ScienceOn
35 Abraham, W.M. (1995). Animal models of late bronchial responses. Eur. Respir. Rev., 5, 211-217
36 Fulkerson, P., Fischetti, C., Hassman, L., Nikolaidis, N.M. and Rothenberg, M.E. (2006). Persistent effects induced by IL- 13 in the lung. Am. J. Respir. Cell. Mol. Biol., 35, 337- 346   DOI   ScienceOn
37 Yuk, J.E., Woo, J.S., Yun, C.Y., Lee, J.S., Kim, J.H., Song, G.Y., Uang, E.J., Hur, I.K. and Kim, I.S. (2007). Effects of lactose-$\beta$-sitosterol and $\beta$-sitosterol on ovalbumin-induced lung inflammation in actively sensitized mice. Inter. Immuno., 7, 1517-1527   DOI   ScienceOn
38 Paramesh, H. (2002). Epidemiology of asthma in India. Indian J. Pediatr., 69, 309-312
39 McDonald, D.M. (2001). Angiogenesis and remodeling of airway vasculature in chronic inflammation. Am. J. Respir. Crit. Care Med., 164, 39-45   DOI
40 Kazuhiko, S and Masami, K. (2003). Mouse Model of Airway Remodeling. Ame. J. Res. Critical Care Med., 168, 959- 967   DOI   ScienceOn
41 Humbert, M., Durham, S.R., Kimmitt, P., Powell, N., Assoufi, B., Pfister, R., Menz, G., Kay, A.B. and Corrigan, C.J. (1997). Elevated expression of messenger ribonucleic acid encoding IL-13 in the bronchial mucosa of atopic and nonatopic subjects with asthma. J. Allergy Clin. Immunol., 99, 657-665   DOI   ScienceOn
42 Yoshida, M., Watson, R.M., Rerecich, T. and O'Byrne, P.M. (2005). Different profiles of T-cell IKN-gamma and IL-12 in allergen-induced early and dual responders with asthma. J. Allergy Clin. Immunol., 115, 1004-1009   DOI   ScienceOn
43 Jiang, J.H., Li, G. Z., Chai, O.H. and Song, C.H. (2005). Increased intraepithelial mast cells in pulmonary airways of mouse asthma model. The Korean J. Anat., 38, 173- 179
44 Bousquet, J., Chanez, P., Lacoste, J.Y., Barneron, G., Ggavanian, N., Enander, I., Venge, P., Ahlstedt, S., Simony- Lafontaine, J. and Goard, P. (1990). Eosinophilic inflammation in asthma. N. Engl. J. Med., 323, 1033-1039   DOI   ScienceOn
45 Swirski, F.K., Sajic, D., Robbins, C.S., Gajewska, B.U., Jordana, M. and Stampfli, M.R. (2002). Chronic exposure to innocuous antigen in sensitized mice leads to suppressed airway eosinophilia that is reversed by granulocyte macrophage colony-stimulating factor. J. Immunol. 169, 3499- 3506   DOI
46 Barnes, P.J., Chung, K.F. and Page, C.P. (1998). Inflammatory mediators of asthma: an update. Pharmacol. Rev., 50, 515-596