• 제목/요약/키워드: glycosides

검색결과 600건 처리시간 0.02초

Intestinal Bacterial Metabolism of Flavonoids and Its Relation to Some Biological Activities

  • Kim, Dong-Hyun;Jung, Eun-Ah;Sohng, In-Suk;Han, Jung-Ah;Kim, Tae-Hyung;Han, Myung-Joo
    • Archives of Pharmacal Research
    • /
    • 제21권1호
    • /
    • pp.17-23
    • /
    • 1998
  • Flavonoid glycosides were metabolized to phenolic acids via aglycones by human intestinal microflora producing ${\alpha}$-rhamnosidase, exo-${\beta}$-glucosidase, endo- ${\beta}$-glucosidase and/or ${\beta}$-glucuronidase. Rutin, hesperidin, naringin and poncirin were transformed to their aglycones by the bacteria producing ${\alpha}$-rhamnosidase and ${\beta}$-glucosidase or endo- ${\beta}$-glucosidase, and baicatin, puerarin and daidzin were transformed to their aglycones by the bacteria producing ${\beta}$glucuronidase, C-glycosidase and ${\beta}$-glycosidase, respectively. Anti-platelet activity and cytotoxicity of the metabolites of flavonoid glycosides by human intestinal bacteria were more effective than those of the parental compounds. 3,4-Dihydroxyphenylacetic acid and 4-hydroxyl-phenylacetic acid were more effective than rutin and quercetin on anti-platelet aggregation activity. 2,4,6-Trihydroxybenzaidehyde, quercetin and ponciretin were more effective than rutin and ponciretin on the cytotoxicity for tumor cell lines. We insist that these flavonoid glycosides should be natural prodrugs.

  • PDF

쇠비름에서 분리된 2개의 Biophenolic Glycosides (Two Biophenolic Glycosides from Portulaca oleracea)

  • 서영완;신종헌;이범종;이동석
    • 대한화학회지
    • /
    • 제47권1호
    • /
    • pp.43-46
    • /
    • 2003
  • 우리나라에 널리 분포하며 오래 동안 약용으로 사용되어 온 쇠비름으로부터 페놀 글리코시드인 3-hydroxy-1(2-hydroxyethyl)phenyl-4-O-${\beta}$-D-glucopyranoside(1)과 2-(3,4-dihydroxyphenyl)ethyl-O-${\beta}$-D-glucopyranoside (2)를 칼럼 크로마토그래피 및 역상 HPLC로 분리하였으며, NOESY, HMQC, HMBC와 같은 이차원적인 NMR 분광실험에 의해서 이 물질들의 $^{13}C$ NMR 분광 데이터 값의 지정이 수정되었다. DPPH를 이용하여 이 물질들의 항산화 활성을 측정한 결과 주목할 만한 활성을 나타내었다.

Interactions of Cationic Drugs and Cardiac Glycosides at the Hepatic Uptake Level: Studies in the Rat in Vivo, Isolated Perfused Rat Liver, Isolated Rat Hepatocytes and Oocytes Expressing oatp2

  • Dirk K.F.Meijer;Jessica E.van Montfoort
    • Archives of Pharmacal Research
    • /
    • 제25권4호
    • /
    • pp.397-415
    • /
    • 2002
  • This paper deals with a crucial mechanism for interaction of basic drugs and cardiac glycosides at the hepatic uptake level. Available literature data is provided and new material is presented to picture the differential transport inhibition of bulky (type2) cationic drugs by a number of cardiac glycosides in rat liver. It is shown that the so called organic anion transporting peptide 2 (oatp2) is the likely interaction site: differential inhibition patterns as observed in oocytes expressing oatp2, could be clearly identified also in isolated rat hepatocytes, isolated perfused rat liver and the rat in vivo. The anticipation of transport interactions at the hepatic clearance level should be based on data on the relative affinities of interacting substrates for the transport systems involved along with knowledge on the pharmacokinetics of these agents as well as the chosen dose regimen in the studied species. This review highlights the importance of multispecific tranporter systems such as OATP, accommodating a broad spectrum of organic compounds of various charge, implying potential transport interactions that can affect body distribution and organ clearance.

Glycosylation of Semi-Synthetic Isoflavene Phenoxodiol with a Recombinant Glycosyltransferase from Micromonospora echinospora ATCC 27932

  • Seo, Minsuk;Seol, Yurin;Park, Je Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권5호
    • /
    • pp.657-662
    • /
    • 2022
  • Glycosyltransferase (GT)-specific degenerate PCR screening followed by in silico sequence analyses of the target clone was used to isolate a member of family1 GT-encoding genes from the established fosmid libraries of soil actinomycetes Micromonospora echinospora ATCC 27932. A recombinant MeUGT1 was heterologously expressed as a His-tagged protein in E. coli, and its enzymatic reaction with semi-synthetic phenoxodiol isoflavene (as a glycosyl acceptor) and uridine diphosphate-glucose (as a glycosyl donor) created two different glycol-attached products, thus revealing that MeUGT1 functions as an isoflavonoid glycosyltransferase with regional flexibility. Chromatographic separation of product glycosides followed by the instrumental analyses, clearly confirmed these previously unprecedented glycosides as phenoxodiol-4'-α-O-glucoside and phenoxodiol-7-α-O-glucoside, respectively. The antioxidant activities of the above glycosides are almost the same as that of parental phenoxodiol, whereas their anti-proliferative activities are all superior to that of cisplatin (the most common platinum chemotherapy drug) against two human carcinoma cells, ovarian SKOV-3 and prostate DU-145. In addition, they are more water-soluble than their parental aglycone, as well as remaining intractable to the simulated in vitro digestion test, hence demonstrating the pharmacological potential for the enhanced bio-accessibility of phenoxodiol glycosides. This is the first report on the microbial enzymatic biosynthesis of phenoxodiol glucosides.

Flavonoids Biotransformation by Human Gut Bacterium Dorea sp. MRG-IFC3 Cell-Free Extract

  • Huynh Thi Ngoc Mi;Heji Kim;Jong Suk Lee;Bekir Engin Eser;Jaehong Han
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권6호
    • /
    • pp.1270-1275
    • /
    • 2024
  • Human gut bacterium Dorea sp. MRG-IFC3 is unique in that it is capable of metabolizing puerarin, an isoflavone C-glycoside, whereas it shows broad substrate glycosidase activity for the various flavonoid O-glycosides. To address the question on the substrate specificity, as well as biochemical characteristics, cell-free biotransformation of flavonoid glycosides was performed under various conditions. The results showed that there are two different enzyme systems responsible for the metabolism of flavonoid C-glycosides and O-glycosides in the MRG-IFC3 strain. The system responsible for the conversion of puerarin was inducible and comprised of two enzymes. One enzyme oxidizes puerarin to 3"-oxo-puerarin and the other enzyme converts 3"-oxo-puearin to daidzein. The second enzyme was only active toward 3"-oxo-puerarin. The activity of puerarin conversion to daidzein was enhanced in the presence of Mn2+ and NAD+. It was concluded that the puerarin C-deglycosylation by Dorea sp. MRG-IFC3 possibly adopts the same biochemical mechanism as the strain PUE, a species of Dorea longicatena.

Anti-Inflammatory Properties of Flavone di-C-Glycosides as Active Principles of Camellia Mistletoe, Korthalsella japonica

  • Kim, Min Kyoung;Yun, Kwang Jun;Lim, Da Hae;Kim, Jinju;Jang, Young Pyo
    • Biomolecules & Therapeutics
    • /
    • 제24권6호
    • /
    • pp.630-637
    • /
    • 2016
  • The chemical components and biological activity of Camellia mistletoe, Korthalsella japonica (Loranthaceae) are relatively unknown compared to other mistletoe species. Therefore, we investigated the phytochemical properties and biological activity of this parasitic plant to provide essential preliminary scientific evidence to support and encourage its further pharmaceutical research and development. The major plant components were chromatographically isolated using high-performance liquid chromatography and their structures were elucidated using tandem mass spectrometry and nuclear magnetic resonance anlysis. Furthermore, the anti-inflammatory activity of the 70% ethanol extract of K. japonica (KJ) and its isolated components was evaluated using a nitric oxide (NO) assay and western blot analysis for inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. Three flavone di-C-glycosides, lucenin-2, vicenin-2, and stellarin-2 were identified as major components of KJ, for the first time. KJ significantly inhibited NO production and reduced iNOS and COX-2 expression in lipopolysaccharide-stimulated RAW 264.7 cells at $100{\mu}g/mL$ while similar activity were observed with isolated flavone C-glycosides. In conclusion, KJ has a simple secondary metabolite profiles including flavone di-C-glycosides as major components and has a strong potential for further research and development as a source of therapeutic anti-inflammatory agents.

Enzymatic Synthesis of β-Glucosylglycerol and Its Unnatural Glycosides Via β-Glycosidase and Amylosucrase

  • Jung, Dong-Hyun;Seo, Dong-Ho;Park, Ji-Hae;Kim, Myo-Jung;Baek, Nam-In;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권4호
    • /
    • pp.562-570
    • /
    • 2019
  • ${\beta}$-Glucosylglycerol (${\beta}-GG$) and their derivatives have potential applications in food, cosmetics and the healthcare industry, including antitumor medications. In this study, ${\beta}-GG$ and its unnatural glycosides were synthesized through the transglycosylation of two enzymes, Sulfolobus shibatae ${\beta}$-glycosidase (SSG) and Deinococcus geothermalis amylosucrase (DGAS). SSG catalyzed a transglycosylation reaction with glycerol as an acceptor and cellobiose as a donor to produce 56% of ${\beta}-GGs$ [${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol and ${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}2$)-$\text\tiny{D}$-glycerol]. In the second transglycosylation reaction, ${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol was used as acceptor molecules of the DGAS reaction. As a result, 61% of ${\alpha}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}4$)-${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol and 28% of ${\alpha}$-$\text\tiny{D}$-maltopyranosyl-($1{\rightarrow}4$)-${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol were synthesized as unnatural glucosylglycerols. In conclusion, the combined enzymatic synthesis of the unnatural glycosides of ${\beta}-GG$ was established. The synthesis of these unnatural glycosides may provide an opportunity to discover new applications in the biotechnological industry.

Phenylpropanoid Glycosides of Paulownia coreana Uyeki Leaves

  • Si, Chuan-Ling;Kim, Jin-Kyu;Kwon, Dong-Joo;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제34권2호
    • /
    • pp.78-82
    • /
    • 2006
  • The leaves of Paulownia coreana Uyeki were collected, extracted with acetone-$H_2O$ (7:3, v/v), concentrated under reduced pressure and successively fractionated using n-hexane, methylene chloride, ethyl acetate and water on a separatory funnel. A portion of the ethyl acetate soluble powder was chromatographed on a Sephadex LH-20 column using aqueous methanol and ethanol-hexane as washing solvents. Two isomeric phenylpropanoid glycosides were isolated and elucidated as verbascoside and isoverbascoside by NMR and MS spectrometers.

Quantitative Structure-Activity Relationship (QSAR) of Antioxidative Anthocyanidins and Their Glycosides

  • Chang, Hyun-Joo;Choi, Eun-Hye;Chun, Hyang-Sook
    • Food Science and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.501-507
    • /
    • 2008
  • The quantitative structure-activity relationships (QSAR) study of antioxidative anthocyanidins and their glycosides were evaluated using 4 different assays of Trolox equivalent antioxidant capacity (TEAC), superoxide radical ($O_2^{{\cdot}-}$), hydrogen peroxide ($H_2O_2$), and peroxynitrite radical ($ONOO^-$) scavenging with TSAR software. Four models were developed with significant predictive values ($r^2$ and p value), which indicated that the antioxidant activities were mainly governed by the 3-dimensional structural energy (torsional energy), constitutional properties (the number of hydroxyl and methyl groups), and electrostatic properties (heat of formation, and dipole, quadrupole, and octupole components). This QSAR approach could contribute to a better understanding of structural properties of anthocyanidins and their glycosides that are responsible for their antioxidant activities. It might also be useful in predicting the antioxidant activities of other anthocyanins.

Two New Flavonol Glycosides from the Aerial Parts of Lotus lalambensis Growing in Saudi Arabia

  • El-Youssef, Hanan M.;Murphy, Brian T.;Amer, Masouda E.;Al-Rehaily, Adnan J.;Abdel-Kader, Maged S.;Kingston, David G.I.
    • Natural Product Sciences
    • /
    • 제14권2호
    • /
    • pp.86-89
    • /
    • 2008
  • Phytochemical study of the aerial parts of Lotus lalambensis Schweinf resulted in the isolation and identification of two new flavonol glycosides; kaempferol $3-O-(5"-acetyl)-apioside-7-O-{\alpha}-L-rhamnopyranoside$ (1) and kaempferol $3-O-{\alpha}-[{\beta}-D-xylosyl-(1""{\rightarrow} 2")-L-rhamnopyranoside]-7-O-{\alpha}-L-rhamnopyranoside$ (2). Structures were determined utilizing different physical, chemical, spectroscopic data including 2D-NMR experiments and HRFABMS.