• 제목/요약/키워드: glycolysis

검색결과 246건 처리시간 0.026초

골격근의 노화에 대한 고찰 (A Review of Journals on the Aging Skeletal Muscle)

  • 권오봉;송윤경;임형호
    • 대한추나의학회지
    • /
    • 제4권1호
    • /
    • pp.55-65
    • /
    • 2003
  • The purpose of this article was to contribute to the knowledge of physiological and pathological changes of aging skeletal muscles, and of therapic method. By aging there were changes of distribution of muscle fibers, the loss of muscle mass, the loss of the number of muscle fibers, the loss of glycolysis capacity, the decrease of the oxidative enzymes and muscle vascularization in the skeletal muscles. And as a pathological change, the exhaustive maximal exercise increased oxidative stress that led to oxidative damage which were shown to be implicated in promoting aging. The property of intensity and duration exercise is important not only in keeping human health and physical fitness from oxidative stress, but also for the maintenance of well-being and quality of life.

  • PDF

Metabolic Characterization of the Corynebacterium glutamicum using DNA Microarray Technology

  • 조광명;장재우;김성준;박영훈
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.739-740
    • /
    • 2001
  • 37종의 주요 대사관련 유전자를 triplicate로 사용하여 DNA microarray를 제작하여 라이신 생산균주의 포도당과 원당을 탄소원으로 하여 배양시기에 따른 대사특성을 분석하였다. 포도당과 원당 사용시 C3, C4 대사산물의 변환에 관련된 anaplerosis에 관여하는 유전자의 발현변화가 매우 중요함을 파악할 수 있었다. 또한 배양시기에 따라 매우 특이적인 유선자 발현 양상을 보임을 학인할 수 있었다.

  • PDF

하이브리도마의 회분식배양에서 아미노산과 비타민의 첨가에 따른 세포성장과 대사의 변화 (Influence of Amino Acid and Vitamin Addition on the Growth and Metabolism of a Hybridoma in Batch Culture)

  • 이동섭;박홍우
    • KSBB Journal
    • /
    • 제13권3호
    • /
    • pp.289-294
    • /
    • 1998
  • The effects of various step-fortifications of the initial medium with amino acids, glucose, and vitamines on the growth and metabolism of a hybridoma cell line in batch cultures were quantified. Comparisons between the metabolic rates of the various cultivations were made for the exponential growth phase. Fortification of the basal medium resulted in higher cell densities through a prolonged growth phase, but the maximum specific growth rate was not affected. The uptake rate of glutamine increased with the addition of amino acids but did not change upon the addition of glucose or vitamines. The specific glucose consumption decreased slightly with the addition of amino acids but increased production of lactate and {{{{ { NH}`_{4 } ^{ +} }}}}. A reciprocal relationship between the yields of {{{{ { NH}`_{4 } ^{+ } }}}} and lactate indicated a joint regulation of glycolysis and glutaminolysis.

  • PDF

Proteome Analysis of Recombinant CHO Cells Under Hyperosmotic Stress

  • 이문수;김경욱;김영환;이균민
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.311-314
    • /
    • 2003
  • Under hyperosmotic stress, rCHO cells display decreased specific growth rate $({\mu})$ and increased specific antibody productivity $(q_{Ab})$. The effects of hyperosmotic stress on batch culture cellular dynamics are not well understood. To this end, we conducted a proteome profile of rCHO cells, using 2D-gel, MALDI-TOF-MS and MS/MS. As a result, the proteome profile of rCHO cells could be established using 41 identified proteins. Based on this proteome profile of rCHO cells, we have found at least 8 differently expressed spots at hyperosmotic osmolality (450 mOsm/kg). Among these spots, two metabolic enzymes were found to be up-regulated (pyruvate kinase and GAPDH), while down-regulated protein was identified as tubulin. It shows that hyperosmotic stress can alter metabolic state, by up-regulated activities of two glycolysis enzymes, which could lead to activate the generation of metabolic energy. Tubulin expression was down-regulated, suggesting a reduction of cell division. Finally, the increased conversion energy could leads to improve overall productivity.

  • PDF

Cancer Metabolism: Strategic Diversion from Targeting Cancer Drivers to Targeting Cancer Suppliers

  • Kim, Soo-Youl
    • Biomolecules & Therapeutics
    • /
    • 제23권2호
    • /
    • pp.99-109
    • /
    • 2015
  • Drug development groups are close to discovering another pot of gold-a therapeutic target-similar to the success of imatinib (Gleevec) in the field of cancer biology. Modern molecular biology has improved cancer therapy through the identification of more pharmaceutically viable targets, and yet major problems and risks associated with late-phase cancer therapy remain. Presently, a growing number of reports have initiated a discussion about the benefits of metabolic regulation in cancers. The Warburg effect, a great discovery approximately 70 years ago, addresses the "universality" of cancer characteristics. For instance, most cancer cells prefer aerobic glycolysis instead of mitochondrial respiration. Recently, cancer metabolism has been explained not only by metabolites but also through modern molecular and chemical biological techniques. Scientists are seeking context-dependent universality among cancer types according to metabolic and enzymatic pathway signatures. This review presents current cancer metabolism studies and discusses future directions in cancer therapy targeting bio-energetics, bio-anabolism, and autophagy, emphasizing the important contribution of cancer metabolism in cancer therapy.

The MEK Inhibitor, PD98059 Blocks the Transactivation, but not the Stabilization or DNA Binding Ability, of Hypoxia-Inducible Factor-1$\alpha$

  • Hur, Eun-Seon;Chang, Keun-Young;Lee, Eun-Jung;Lee, Seung-Ki;Park, Hyun-Sung
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Signal transduction in Toxicology
    • /
    • pp.41-83
    • /
    • 2001
  • Under low oxygen tension, cells increase the transcription of specific genes that are involved in angiogenesis, erythropoiesis and glycolysis. Hypoxia-induced gene expression primarily depends on the stabilization of the subunit of Hypoxia-Inducible Factor-1 (HIF-1), which acts as a heterodimeric transactivator.(omitted)

  • PDF

Inter-scale Observation and Process Optimization for Guanosine Fermentation

  • Chu, Ju;Zhang, Si-Liang;Zhuang, Ying-Ping
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2005년도 2005 Annual Meeting & International Symposium
    • /
    • pp.233-244
    • /
    • 2005
  • Guanosine fermentation process can be well predicted and analyzed by the proposed state equations describing the dynamic change of a bioreactor. Pyruvate and alanine were found to be characteristically accumulated along with the decline of the guanosine formation rate during the mid-late phase of the process. The enzymological study of the main pathways in glucose catabolism and the quantitative stoichiometric calculation of metabolic flux distribution revealed that it was entirely attributed to the shift of metabolic flux from hexose monophosphate (HMP) pathway to glycolysis pathway. The process optimization by focusing on the restore of the shift of metabolic flux was conducted and the overcoming the decrease of oxygen uptake rate (OUR) was taken as the relevant factor of the trans-scale operation. As a result, the production of guanosinewas increased from 17 g/L to over 34 g/I.

  • PDF

Cancer Metabolism: Fueling More than Just Growth

  • Lee, Namgyu;Kim, Dohoon
    • Molecules and Cells
    • /
    • 제39권12호
    • /
    • pp.847-854
    • /
    • 2016
  • The early landmark discoveries in cancer metabolism research have uncovered metabolic processes that support rapid proliferation, such as aerobic glycolysis (Warburg effect), glutaminolysis, and increased nucleotide biosynthesis. However, there are limitations to the effectiveness of specifically targeting the metabolic processes which support rapid proliferation. First, as other normal proliferative tissues also share similar metabolic features, they may also be affected by such treatments. Secondly, targeting proliferative metabolism may only target the highly proliferating "bulk tumor" cells and not the slowergrowing, clinically relevant cancer stem cell subpopulations which may be required for an effective cure. An emerging body of research indicates that altered metabolism plays key roles in supporting proliferation-independent functions of cancer such as cell survival within the ischemic and acidic tumor microenvironment, immune system evasion, and maintenance of the cancer stem cell state. As these aspects of cancer cell metabolism are critical for tumor maintenance yet are less likely to be relevant in normal cells, they represent attractive targets for cancer therapy.

성인형 당원축적근육병 1예 (A Case of Adult Onset Glycogen Storage Myopathy)

  • 신정환;김동건;신제영;박성혜;이광우
    • Annals of Clinical Neurophysiology
    • /
    • 제16권2호
    • /
    • pp.81-85
    • /
    • 2014
  • Primary metabolic myopathy as a type of congenital myopathies was first described by McArdle in 1951. Glycogen storage disease is a disease caused by genetic mutations involved in glycogen synthesis, glycogenolysis or glycolysis. Several types of glycogen storage disease are known to cause metabolic myopathies. We report a case of adult onset metabolic myopathy with glycogen storage.

흰쥐에서의 일산화탄소(一酸化炭素) 중독(中毒)이 뇌(腦)에너지 대사(代謝) 관련물질(關聯物質) 함량변화(含量變化)에 미치는 영향 (Effect of Carbon Monoxide Intoxication on the Change in Contents of Cerebral Energy Metabolites of Rats)

  • 윤재순;최신규
    • 약학회지
    • /
    • 제33권3호
    • /
    • pp.149-155
    • /
    • 1989
  • To predict the influence of carbon monoxide poisonining on cerebral energy metabolism, rats were exposed to 5000 ppm environment for 30 minutes. Carboxyhemoglobin (HBCO) saturation rate in this condition was 72% equally in male and female rats. Cerebral cortex in the rats showed lower level of ATP, glucose, creatine phosphate and higher level of lactate, pyruvate by anaerobic glycolysis. As for the levels of ATP, creatine phsphate and glucose, the cerebral cortex contents of them were larger in female rats of estrus than in male rats, whereas there was no difference between sexes in the levels of pyruvate and lactate. According to time passage from CO intoxication, the mode of changes in cerebral energy metabolite contents was similar in both sexes.

  • PDF