Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.013

Cancer Metabolism: Strategic Diversion from Targeting Cancer Drivers to Targeting Cancer Suppliers  

Kim, Soo-Youl (Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center)
Publication Information
Biomolecules & Therapeutics / v.23, no.2, 2015 , pp. 99-109 More about this Journal
Abstract
Drug development groups are close to discovering another pot of gold-a therapeutic target-similar to the success of imatinib (Gleevec) in the field of cancer biology. Modern molecular biology has improved cancer therapy through the identification of more pharmaceutically viable targets, and yet major problems and risks associated with late-phase cancer therapy remain. Presently, a growing number of reports have initiated a discussion about the benefits of metabolic regulation in cancers. The Warburg effect, a great discovery approximately 70 years ago, addresses the "universality" of cancer characteristics. For instance, most cancer cells prefer aerobic glycolysis instead of mitochondrial respiration. Recently, cancer metabolism has been explained not only by metabolites but also through modern molecular and chemical biological techniques. Scientists are seeking context-dependent universality among cancer types according to metabolic and enzymatic pathway signatures. This review presents current cancer metabolism studies and discusses future directions in cancer therapy targeting bio-energetics, bio-anabolism, and autophagy, emphasizing the important contribution of cancer metabolism in cancer therapy.
Keywords
Cancer; Metabolism; Cancer therapy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sonveaux, P., Copetti, T., De Saedeleer, C. J., Vegran, F., Verrax, J., Kennedy, K. M., Moon, E. J., Dhup, S., Danhier, P., Frerart, F., Gallez, B., Ribeiro, A., Michiels, C., Dewhirst, M. W. and Feron, O. (2012) Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PloS One 7, e33418.   DOI
2 Sonveaux, P., Vegran, F., Schroeder, T., Wergin, M. C., Verrax, J., Rabbani, Z. N., De Saedeleer, C. J., Kennedy, K. M., Diepart, C., Jordan, B. F., Kelley, M. J., Gallez, B., Wahl, M. L., Feron, O. and Dewhirst, M. W. (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930-3942.
3 Sooparb, S., Price, S. R., Shaoguang, J. and Franch, H. A. (2004) Suppression of chaperone-mediated autophagy in the renal cortex during acute diabetes mellitus. Kidney Int. 65, 2135-2144.   DOI
4 Spear, B. B., Heath-Chiozzi, M. and Huff, J. (2001) Clinical application of pharmacogenetics. Trends Mol. Med. 7, 201-204.   DOI
5 Stegmeier, F., Warmuth, M., Sellers, W. R. and Dorsch, M. (2010) Targeted cancer therapies in the twenty-first century: lessons from imatinib. Clin. Pharmacol. Ther. 87, 543-552.   DOI
6 Strausberg, R. L., Simpson, A. J., Old, L. J. and Riggins, G. J. (2004) Oncogenomics and the development of new cancer therapies. Nature 429, 469-474.   DOI
7 Takeuchi, H., Kondo, Y., Fujiwara, K., Kanzawa, T., Aoki, H., Mills, G. B. and Kondo, S. (2005) Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res. 65, 3336-3346.
8 Vander Heiden, M. G. (2011) Targeting cancer metabolism: a therapeutic window opens. Nature reviews. Nat. Rev. Drug Discov. 10, 671-684.   DOI   ScienceOn
9 Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J. and Sutton, G. G., et al. (2001) The sequence of the human genome. Science 291, 1304-1351.   DOI   ScienceOn
10 Ward, P. S. and Thompson, C. B. (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 297-308.   DOI   ScienceOn
11 Wilhelm, S. M., Adnane, L., Newell, P., Villanueva, A., Llovet, J. M. and Lynch, M. (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther. 7, 3129-3140.   DOI
12 Yun, M., Bang, S. H., Kim, J. W., Park, J. Y., Kim, K. S. and Lee, J. D. (2009) The importance of acetyl coenzyme A synthetase for 11Cacetate uptake and cell survival in hepatocellular carcinoma. J. Nucl. Med. 50, 1222-1228.   DOI
13 Zakikhani, M., Dowling, R., Fantus, I. G., Sonenberg, N. and Pollak, M. (2006) Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 66, 10269-10273.   DOI
14 Zhao, Y., Liu, H., Riker, A. I., Fodstad, O., Ledoux, S. P., Wilson, G. L. and Tan, M. (2011) Emerging metabolic targets in cancer therapy. Front. Biosci. 16, 1844-1860.   DOI
15 Bernards, R. (2012) A missing link in genotype-directed cancer therapy. Cell 151, 465-468.   DOI
16 Arduino, L. J. and Mellinger, G. T. (1967) Clinical trial of busulfan (NSC-750) in advanced carcinoma of prostate. Cancer Chemother. Rep. 51, 295-303.
17 Armour, A. A. and Watkins, C. L. (2010) The challenge of targeting EGFR: experience with gefitinib in nonsmall cell lung cancer. Eur. Respir. Rev. 19, 186-196.   DOI
18 Ben Sahra, I., Laurent, K., Loubat, A., Giorgetti-Peraldi, S., Colosetti, P., Auberger, P., Tanti, J. F., Le Marchand-Brustel, Y. and Bost, F. (2008) The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 27, 3576-3586.   DOI   ScienceOn
19 Birsoy, K., Wang, T., Possemato, R., Yilmaz, O. H., Koch, C. E., Chen, W. W., Hutchins, A. W., Gultekin, Y., Peterson, T. R., Carette, J. E., Brummelkamp, T. R., Clish, C. B. and Sabatini, D. M. (2013) MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat. Genet. 45, 104-108.
20 Brook, J., Bateman, J. R. and Steinfeld, J. L. (1964) Evaluation of Melphalan (Nsc-8806) in Treatment of Multiple Myeloma. Cancer Chemother. Rep. 36, 25-34.
21 Buck, E., Eyzaguirre, A., Haley, J. D., Gibson, N. W., Cagnoni, P. and Iwata, K. K. (2006) Inactivation of Akt by the epidermal growth factor receptor inhibitor erlotinib is mediated by HER-3 in pancreatic and colorectal tumor cell lines and contributes to erlotinib sensitivity. Mol. Cancer Ther. 5, 2051-2059.   DOI
22 Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490, 61-70.   DOI   ScienceOn
23 DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S. and Thompson, C. B. (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U.S.A. 104, 19345-19350.   DOI
24 Chabner, B. A. and Roberts, T. G., Jr. (2005) Timeline: Chemotherapy and the war on cancer. Nat. Rev. Cancer 5, 65-72.   DOI
25 Chan, S. (2004) Targeting the mammalian target of rapamycin (mTOR): a new approach to treating cancer. Br. J. Cancer 91, 1420-1424.   DOI
26 Cheong, H., Lu, C., Lindsten, T. and Thompson, C. B. (2012) Therapeutic targets in cancer cell metabolism and autophagy. Nat. Biotechnol. 30, 671-678.   DOI
27 Edmonson, J. H., Lagakos, S., Stolbach, L., Perlia, C. P., Bennett, J. M., Mansour, E. G., Horton, J., Regelson, W., Cummings, F. J., Israel, L., Brodsky, I., Shnider, B. I., Creech, R. and Carbone, P. P. (1976) Mechlorethamine (NSC-762) plus CCNU (NSC-79037) in the treatment of inoperable squamous and large cell carcinoma of the lung. Cancer Treat. Rep. 60, 625-627.
28 Ertmer, A., Huber, V., Gilch, S., Yoshimori, T., Erfle, V., Duyster, J., Elsasser, H. P. and Schatzl, H. M. (2007) The anticancer drug imatinib induces cellular autophagy. Leukemia 21, 936-942.
29 Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. and Morris, A. D. (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 1304-1305.   DOI
30 Fan, J., Ye, J., Kamphorst, J. J., Shlomi, T., Thompson, C. B. and Rabinowitz, J. D. (2014) Quantitative flux analysis reveals folatedependent NADPH production. Nature 510, 298-302.   DOI
31 Gilman, A. (1963) The initial clinical trial of nitrogen mustard. Am. J. Surg. 105, 574-578.   DOI
32 Fausel, C. (2007) Targeted chronic myeloid leukemia therapy: Seeking a cure. Am. J. Health Syst. Pharm. 64, S9-15.
33 Fisher, B. K. and Elliott, G. B. (1965) Triple drug therapy with actinomycin D (Nsc-3053), chlorambucil (Nsc-3088), and methotrexate (Nsc-740) in metastatic solid tumors in children. Cancer Chemother. Rep. 45, 45-51.
34 Foley, J. F. and Kennedy, B. J. (1964) Effect of cyclophosphamide (Nsc-26271) on far-advanced neoplasia. Cancer Chemother. Rep. 34, 55-58.
35 Goldman, J. M. and Melo, J. V. (2003) Chronic myeloid leukemia-- advances in biology and new approaches to treatment. N. Engl. J. Med. 349, 1451-1464.   DOI
36 Gorzalczany, Y., Gilad, Y., Amihai, D., Hammel, I., Sagi-Eisenberg, R. and Merimsky, O. (2011) Combining an EGFR directed tyrosine kinase inhibitor with autophagy-inducing drugs: a beneficial strategy to combat non-small cell lung cancer. Cancer Lett. 310, 207-215.   DOI
37 Haugrud, A. B., Zhuang, Y., Coppock, J. D. and Miskimins, W. K. (2014) Dichloroacetate enhances apoptotic cell death via oxidative damage and attenuates lactate production in metformin-treated breast cancer cells. Breast Cancer Res. Treat. 147, 539-550.   DOI
38 Hay, N. and Sonenberg, N. (2004) Upstream and downstream of mTOR. Genes Dev. 18, 1926-1945.   DOI
39 Jackson, R. C. (1987) Unresolved issues in the biochemical pharmacology of antifolates. NCI Monogr. 9-15.
40 Jacobs, E. M., Peters, F. C., Luce, J. K., Zippin, C. and Wood, D. A. (1968) Mechlorethamine HCl and cyclophosphamide in the treatment of Hodgkin's disease and the lymphomas. JAMA 203, 392-398.   DOI
41 Janku, F., McConkey, D. J., Hong, D. S. and Kurzrock, R. (2011) Autophagy as a target for anticancer therapy. Nat. Rev. Clin. Oncol. 8, 528-539.   DOI
42 Jiralerspong, S., Palla, S. L., Giordano, S. H., Meric-Bernstam, F., Liedtke, C., Barnett, C. M., Hsu, L., Hung, M. C., Hortobagyi, G. N. and Gonzalez-Angulo, A. M. (2009) Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J. Clin. Oncol. 27, 3297-3302.   DOI
43 Kanzawa, T., Germano, I. M., Komata, T., Ito, H., Kondo, Y. and Kondo, S. (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 11, 448-457.   DOI
44 Kimura, T., Takabatake, Y., Takahashi, A. and Isaka, Y. (2013) Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer Res. 73, 3-7.
45 Klionsky, D. J., Abdalla, F. C., Abeliovich, H., Abraham, R. T., Acevedo- Arozena, A. and Adeli, K., et al. (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544.   DOI
46 Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C. and Baldwin, J., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860-921.   DOI
47 Lottmann, H. B., Margaryan, M., Bernuy, M., Rouffet, M. J., Bau, M. O., El-Ghoneimi, A., Aigrain, Y., Stenberg, A. and Lackgren, G. (2002) The effect of endoscopic injections of dextranomer based implants on continence and bladder capacity: a prospective study of 31 patients. J. Urol. 168, 1863-1867.   DOI
48 Regelson, W., Holland, J. F., Frei, E., 3rd, Gold, G. L., Hall, T., Krant, M. and Miller, S. O. (1964) Comparative clinical toxicity of 6-mercaptopurine (Nsc-755)-1 and 6-mercaptopurine ribonucleoside (Nsc-4911)-2 administered intravenously to patients with advanced cancer. Cancer Chemother. Rep. 36, 41-48.
49 Michelakis, E. D., Webster, L. and Mackey, J. R. (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer 99, 989-994.   DOI
50 Nieman, K. M., Kenny, H. A., Penicka, C. V., Ladanyi, A., Buell-Gutbrod, R., Zillhardt, M. R., Romero, I. L., Carey, M. S., Mills, G. B., Hotamisligil, G. S., Yamada, S. D., Peter, M. E., Gwin, K. and Lengyel, E. (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498-1503.   DOI
51 Robinson, M. M., McBryant, S. J., Tsukamoto, T., Rojas, C., Ferraris, D. V., Hamilton, S. K., Hansen, J. C. and Curthoys, N. P. (2007) Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem. J. 406, 407-414.   DOI
52 Sausville, E. A. and Johnson, J. I. (2000) Molecules for the millennium: how will they look? New drug discovery year 2000. Br. J. Cancer 83, 1401-1404.   DOI
53 Seltzer, M. J., Bennett, B. D., Joshi, A. D., Gao, P., Thomas, A. G., Ferraris, D. V., Tsukamoto, T., Rojas, C. J., Slusher, B. S., Rabinowitz, J. D., Dang, C. V. and Riggins, G. J. (2010) Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 70, 8981-8987.   DOI