• 제목/요약/키워드: glutathione s-transferase

Search Result 854, Processing Time 0.046 seconds

Effects of Mulberry Leaf Tea Fermented by Monascus pilosus on Body Weight and Hepatic Antioxidant Enzyme Activities in Mouse Fed High-Fat Diet (Monascus pilosus 발효 뽕잎차가 고지방 식이 마우스의 체중과 간 조직 항산화계 효소 활성에 미치는 영향)

  • Lee, Sang-Il;Lee, Ye-Kyung;Lee, In-Ae;Choi, Jongkeun;Kim, Soon-Dong;Suh, Joo-Won
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.1
    • /
    • pp.66-77
    • /
    • 2013
  • In this study, we investigated the preventive effects of the mulberry leaf tea fermented by Monascus pilosus on high fat-induced obesity, hyperlipidemia, and fatty liver in mice. Non-fermented mulberry leaf tea powder (UM) and fermented mulberry leaf tea powder (FM) were supplemented with high-fat diet at 2% (wt/wt) dosage for 8 weeks. Both UM and FM lowered body weight gain, feed efficiency ratio, epididymal fat, serum triglyceride, total cholesterol and LDL-cholesterol increased markedly with high fat diet (HC) in mice. FM showed more significant effects when it was compared with UM. In addition, Hepatic lipid peroxides and xanthin oxidase activities of the UM and FM were significantly lower than those of HC, despite the lack of a big difference in the amount of hepatic GSH. Activities of ROS scavenging enzymes and serum alanine aminotransferase activity were also examined as a parameter of hepatic damage. The UM and FM groups showed a recovery to NC group from significant changes induced by HC. Finally, histopathological analyses of liver samples revealed a decrease of lipid accumulation in hepatocytes in the UM and FM groups. These results suggest that UM and especially FM can reduce the development of obesity, hyperlipidemia and fatty liver.

Protection by Chrysanthemum zawadskii extract from liver damage of mice caused by carbon tetrachloride is maybe mediated by modulation of QR activity

  • Seo, Ji-Yeon;Lim, Soon-Sung;Park, Ji-A;Lim, Ji-Sun;Kim, Hyo-Jung;Kang, Hui-Jung;YoonPark, Jung-Han;Kim, Jong-Sang
    • Nutrition Research and Practice
    • /
    • v.4 no.2
    • /
    • pp.93-98
    • /
    • 2010
  • Our previous study demonstrated that methanolic extract of Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae) has the potential to induce detoxifying enzymes such as NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) (NQO1, QR) and glutathione S-transferase (GST). In this study we further fractionated methanolic extract of Chrysanthemum zawadskii and investigated the detoxifying enzyme-inducing potential of each fraction. The fraction (CZ-6) shown the highest QR-inducing activity was found to contain (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro [4,5] decane and increased QR enzyme activity in a dose-dependent manner. Furthermore, CZ-6 fraction caused a dose-dependent enhancement of luciferase activity in HepG2-C8 cells generated by stably transfecting antioxidant response element-luciferase gene construct, suggesting that it induces antioxidant/detoxifying enzymes through antioxidant response element (ARE)-mediated transcriptional activation of the relevant genes. Although CZ-6 fraction failed to induce hepatic QR in mice over the control, it restored QR activity suppressed by $CCl_4$ treatment to the control level. Hepatic injury induced by $CCl_4$ was also slightly protected by pretreatment with CZ-6. In conclusion, although CZ-6 fractionated from methanolic extract of Chrysanthemum zawadskii did not cause a significant QR induction in mice organs such as liver, kidney, and stomach, it showed protective effect from liver damage caused by $CCl_4$.

Cross Resistance and Point Mutation of the Mitochondrial Cytochrome b of Bifenazate Resistant Two-spotted Spider Mite, Tetranychus urticae (Bifenazate 저항성 점박이응애에 대한 교차저항성과 미토콘드리아 cytochrome b의 점돌연변이)

  • Lee, Kyo-Ri;Koo, Hyun-Na;Yoon, Chang-Mann;Kim, Gil-Hah
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.3
    • /
    • pp.247-254
    • /
    • 2010
  • Two-spotted spider mite, Tetranychus urticae was collected from the rose greenhouse in Chilgok, Gyeongbuk Province in December 2000. This population has been selected for ten years with bifenazate (over 450 times), and increased 855.9 fold in resistance as compared with susceptible strain (S). Cross resistance of bifenazate resistant (BR) strain to eight miticides was investigated. The BR strain exhibited high and low cross resistance to acequinocyl (614.0 fold) and to chlorfenapyr (9.1 fold), respectively. Against fenazaquin (0.3 fold) and fenpyroximate (0.1 fold), however, showed the strain negatively correlated cross resistance. Each strain collected in Choeng-ju (CJ), Kang-jin (KJ), and Chung-ju (CUJ) showed 5.5-, 964.5-, and 21.8-fold resistance to bifenazate, respectively. The detoxifying enzymes of the BR strain showed 1.6-fold activity in cytochrome $P_{450}$-dependent monooxygenase ($P_{450}$) as compared with susceptible one. By comparing the mitochondrial cytochrome b (cytb) sequence, G126S point mutation was detected in the BR and KJ strains.

Association Between the GSTP1 Codon 105 Polymorphism and Gastric Cancer Risk: an Updated Meta-analysis

  • Bao, Li-Dao;Niu, Jian-Xiang;Song, Hui;Wang, Yi;Ma, Rui-Lian;Ren, Xian-Hua;Wu, Xin-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3687-3693
    • /
    • 2012
  • Objective: The current meta-analysis was performed to address a more accurate estimation of the association between glutathione S-transferase P1 (GSTP1) codon 105 polymorphism and risk of gastric cancer (GC), which has been widely reported with conflicting results. Methods: A comprehensive literature search was conducted to identify all the relevant studies. Fixed or random effect models were selected based on the heterogeneity test. Publication bias was estimated using Begg's funnel plots and Egger's regression test. Results: A total of 20 studies containing 2,821 GC cases and 6,240 controls were finally included in the analyses. Overall, no significant association between GSTP1 polymorphism and GC risk was observed in worldwide populations. However, subgroup analysis stratified by ethnicity showed that GSTP1 polymorphism was significantly associated with increased risk of GC in Asians (G vs. A, OR = 1.273, 95%CI=1.011-1.605; GG vs. AA, OR=2.103, 95%CI=1.197-3.387; GG vs. AA+AG, OR =2.103, 95%CI=1.186-3.414). In contrast, no significant association was found in Caucasians in any genetic models, except for with AG vs. AA (OR=0.791, 95%CI=0.669-0.936). Furthermore, the GSTP1 polymorphism was found to be significantly associated with GC in patients with H. pylori infection and in those with a cardiac GC. Subgroup analysis stratified by Lauren's classification and smoking status showed no significant association with any genetic model. No studies were found to significantly influence the pooled effects in each genetic mode, and no potential publication bias was detected. Conclusion: This meta-analysis suggested that the GSTP1 polymorphism might be associated with increased risk of GC in Asians, while GSTP1 heterozygote genotype seemed to be associated with reduced risk of GC. Since potential confounders could not be ruled out completely, further studies are needed to confirm these results.

Establishment of Paclitaxel-resistant Breast Cancer Cell Line and Nude Mice Models, and Underlying Multidrug Resistance Mechanisms in Vitro and in Vivo

  • Chen, Si-Ying;Hu, Sa-Sa;Dong, Qian;Cai, Jiang-Xia;Zhang, Wei-Peng;Sun, Jin-Yao;Wang, Tao-Tao;Xie, Jiao;He, Hai-Rong;Xing, Jian-Feng;Lu, Jun;Dong, Ya-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.6135-6140
    • /
    • 2013
  • Background: Breast cancer is a common malignant tumor which affects health of women and multidrug resistance (MDR) is one of the main factors leading to failure of chemotherapy. This study was conducted to establish paclitaxel-resistant breast cancer cell line and nude mice models to explore underlying mechanisms of MDR. Methods: The breast cancer drug-sensitive cell line MCF-7 (MCF-7/S) was exposed in stepwise escalating paclitaxel (TAX) to induce a resistant cell line MCF-7/TAX. Cell sensitivity to drugs and growth curves were measured by MTT assay. Changes of cell morphology and ultrastructure were examined by optical and electron microscopy. The cell cycle distribution was determined by flow cytometry. Furthermore, expression of proteins related to breast cancer occurrence and MDR was tested by immunocytochemistry. In Vivo, nude mice were injected with MCF-7/S and MCF-7/TAX cells and weights and tumor sizes were observed after paclitaxel treatment. In addition, proteins involved breast cancer and MDR were detected by immunohistochemistry. Results: Compared to MCF-7/S, MCF-7/TAX cells had a higher resistance to paclitaxel, cross-resistance and prolonged doubling time. Moreover, MCF-7/TAX showed obvious alterations of ultrastructure. Estrogen receptor (ER) expression was low in drug resistant cells and tumors while expression of human epidermal growth factor receptor 2 (HER2) and Ki-67 was up-regulated. P-glycoprotein (P-gp), lung resistance-related protein (LRP) and glutathione-S-transferase-${\pi}$ (GST-${\pi}$) involved in the MDR phenotype of resistant cells and tumors were all overexpressed. Conclusion: The underlying MDR mechanism of breast cancer may involve increased expression of P-gp, LRP and GST-${\pi}$.

Effect of Alcohol Detoxification Beverage that Contained Bulnesia sarmienti on Alcohol-metabolizing Enzymes and Antioxidant Enzyme Activities (Bulnesia sarmienti 를 함유한 숙취해소 음료가 알코올대사 및 항산화 효소활성에 미치는 영향)

  • Lim, Ae-Kyung;Jung, Mee-Jung;Lee, Jae-Wook;Hong, Joo-Heon;Kim, Kil-Soo;Jung, Seok-Bang;Kim, Dae-Ik
    • Food Science and Preservation
    • /
    • v.18 no.3
    • /
    • pp.407-413
    • /
    • 2011
  • This study was carried out to investigate the effect of a beverage that contained Bulnesia sarmienti(BSP, 2.5%) on rats to which alcohol was administered. The treatment of the BSP group reduced the serum alcohol concentration to 52%, compared to 47% in the positive control(PC) group. Similar pattell1s were observed in the enhancement of alcohol dehydrogenase(ADH), acetaldehyde dehydrogenase(ALDH), alkaline phosphate(ALP), alanine aminotransferase(ALT), asparate aminotransferase(AST), total cholesterol(CHOL), ${\gamma}$-glutamyltrasferase(GGT), glucose(GLU), total bilirubin, and total protein(TP) in the serum. Also, in the BSP group, the lipoxidase(LPO), glutathion-S-transferase(GST), XO, catalase(CAT), and superoxide dismutase(SOD) were significantly reduced, compared to the CO and PC groups in the liver. The glutathione(GSH) activity increased in the BSP group, though. These results indicate that Bulnesia sarmienti extract can enhance alcohol metabolization activity.

The Hepatoprotective Effect of Active Compounds of Kochiae fructus on D-Galactosamine-Intoxicated Rats (지부자 활성성분이 D-Galactosamine 투여에 의한 흰쥐의 간손상에 미치는 영향)

  • Kim, Na-Young;Lee, Jeong-Sook;Park, Myoung-Ju;Lee, Kyung-Hee;Kim, Seok-Hwan;Choi, Jong-Won;Park, Hee-Juhn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.8
    • /
    • pp.1286-1293
    • /
    • 2004
  • This study was conducted to investigate the biological activity and hepatoprotective effect of various fractions and isolated compounds from Kochiae fructus (KF) extract on D-galactosamine (GaIN)-intoxicated rats. Male Sprague-Dawley rats were divided into control, GaIN treated group (GaIN), GaIN plus KF methanol extract treated group (KFM 200-GaIN), GaIN plus KF butanol extract treated group (KFB 200-GaIN), GaIN plus momordin Ic treated group (Momordin Ic 30-GaIN) and GaIN plus oleanolic acid treated group (Oleanolic acid 30-GaIN). KFM (200 mg/kg BW), KFB (200 mg/kg BW), momordin Ic (30 mg/kg BW) and oleanolic acid (30 mg/kg BW) were orally administered once a day for 14 days. GaIN (400 mg/kg BW) was injected at 30 minutes after the final administration of the compounds. The activities of serum aspartate aminotransferase and alanine aminotransferase were increased in the GaIN group compared to the control group and significantly lower in the KFB 200-GaIN, momordin Ic 30-GaIN and oleanolic acid 30-GaIN group than in the GaIN group. Hepatic lipid peroxide level was increased in the GaIN group compared to the control group and was lower in the KFM 200-GaIN, KFB 200-GaIN, momordin Ic 30-GaIN and oleanolic acid 30-GaIN group than in the GaIN group. Activities of xanthine oxidase and aldehyde oxidase in liver were higher in the GaIN group than in the control group and were significantly decreased in the KFB 200-GaIN, momordin Ic 30-GaIN and oleanolic acid 30-GaIN group compared to the GaIN group. Hepatic glutathione, ${\gamma}$-glutamylcysteine synthetase and catalase activities were decreased in the GaIN group compared to the control group and were higher in the KFB 200-GaIN, momordin Ic 30-GaIN and oleanolic acid 30-GaIN group than in the GaIN group. Activities of hepatic glutathione reductase, glutathione S-transferase, superoxide dismutase and glutathione peroxidase were lower in the GaIN group than in the control group and were improved in the KFM 200-GaIN, KFB 200-GaIN, momordin Ic 30-GaIN and oleanolic acid 30-GaIN group compared to the GaIN group. Therefore, the current results indicate that momordin Ic administration alleviated the GaIN-induced adverse effect through enhancing the antioxidant enzyme activities.

Gene Expression Profile of Rat Hypothalamus Treated with Electroacupuncture at ST36 Acupoint (족삼리 전침자극에 의한 흰쥐 hypothalamus의 유전자 발현 profile 분석)

  • Rho Sam Woong;Lee Gi Seog;Choi Gi Soon;Na Young In;Hong Moo Chang;Shin Min Kyu;Min Byung il;Bae Hyun Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1041-1054
    • /
    • 2004
  • Electroacupuncture (EA) has been reported to increase pain threshold, and to enhance the NK cell activity by up-regulation of IFN-γ and endogenous β-endolphin. For the purpose of understanding the molecular mechanism of EA stimulation, we analyzed the gene expression profile of rat hypothalamus, treated on Zusanli (ST36) with EA, in comparison with control group by oligonucleotide chip microarray (Affymetrix GeneChip Rat Neurobiology U34 Array) and real-time RT-PCR. Sprague-Dawley (S-D) male rats were stimulated at the Zusanli (ST36) acupoint in restriction holder. Simultaneously the control group was given only holder stress without EA stimulation. In order to prove the appropriateness of EA treatment, we measured spleen NK cell activity with standard 51Cr release assay. NK cell activity of EA group was significantly increased comparing to control group. The microarray and PCR results show that EA treatment up-regulates expression of genes associated with 1) nerve growth such as NGF induced factor A and VGF, 2) signal transduction such as 5HT3 receptor subunit, AMPA receptor binding protein and Na-dependent neurotransmitter transporter, and 3) anti-oxidation such as superoxide dismutase and glutathione S-transferase. In addition, the activity of the anti-oxidative enzyme, SOD of hypothalamus, liver and RBC was enhanced compared to that of control. The list of differentially expressed genes may implicate further insight on the mechanism of acupuncture effects.

Effects of dietary Antrodia cinnamomea fermented product supplementation on metabolism pathways of antioxidant, inflammatory, and lipid metabolism pathways-a potential crosstalk

  • Lee, M.T.;Lin, W.C.;Lin, L.J.;Wang, S.Y.;Chang, S.C.;Lee, T.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1167-1179
    • /
    • 2020
  • Objective: This study was conducted to fathom the underlying mechanisms of nutrition intervention and redox sensitive transcription factors regulated by Antrodia cinnamomea fermented product (FAC) dietary supplementation in broiler chickens. Methods: Four hundreds d-old broilers (41±0.5 g/bird) assigned to 5 groups were examined after consuming control diet, or control diet replaced with 5% wheat bran (WB), 10% WB, 5% FAC, and 10% FAC. Liver mRNA expression of antioxidant, inflammatory and lipid metabolism pathways were analyzed. Prostaglandin E2 (PGE2) concentration in each group were tested in the chicken peripheral blood mononuclear cells (cPBMCs) of 35-d old broilers to represent the stress level of the chickens. Furthermore, these cells were stimulated with 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) and lipopolysaccharide (LPS) to evaluate the cell stress tolerance by measuring cell viability and oxidative species. Results: Heme oxygenase-1, glutathione S-transferase, glutamate-cysteine ligase, catalytic subunit, and superoxide dismutase, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) that regulates the above antioxidant genes were all up-regulated significantly in FAC groups. Reactive oxygen species modulator protein 1 and NADPH oxygenase 1 were both rather down-regulated in 10% FAC group as comparison with two WB groups. Despite expressing higher level than control group, birds receiving diet containing FAC had significantly lower expression level in nuclear factor-kappa B (NF-κB) and other genes (inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-1β, nucleotide-binding domain, leucine-richcontaining family, pyrin domain-containing-3, and cyclooxygenase 2) involving in inflammatory pathways. Additionally, except for 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase that showed relatively higher in both groups, the WB, lipoprotein lipase, Acetyl-CoA carboxylase, fatty acid synthase, fatty acid binding protein, fatty acid desaturase 2 and peroxisome proliferator-activated receptor alpha genes were expressed at higher levels in 10% FAC group. In support of above results, promoted Nrf2 and inhibited NF-κB nuclear translocation in chicken liver were found in FAC containing groups. H2O2 and NO levels induced by LPS and AAPH in cPBMCs were compromised in FAC containing diet. In 35-d-old birds, PGE2 production in cPBMCs was also suppressed by the FAC diet. Conclusion: FAC may promote Nrf2 antioxidant pathway and positively regulate lipid metabolism, both are potential inhibitor of NF-κB inflammatory pathway.

Molecular characterization and docking dynamics simulation prediction of cytosolic OASTL switch cysteine and mimosine expression in Leucaena leucocephala

  • Harun-Ur-Rashid, Md.;Masakazu, Fukuta;Amzad Hossain, Md.;Oku, Hirosuke;Iwasaki, Hironori;Oogai, Shigeki;Anai, Toyoaki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.36-36
    • /
    • 2017
  • Out of twenty common protein amino acids, there are many kinds of non protein amino acids (NPAAs) that exist as secondary metabolites and exert ecological functions in plants. Mimosine (Mim), one of those NPAAs derived from L. leucocephala acts as an iron chelator and reversely block mammalian cell cycle at G1/S phases. Cysteine (Cys) is decisive for protein and glutathione that acts as an indispensable sulfur grantor for methionine and many other sulfur-containing secondary products. Cys biosynthesis includes consecutive two steps using two enzymes-serine acetyl transferase (SAT) and O-acetylserine (thiol)lyase (OASTL) and appeared in plant cytosol, chloroplast, and mitochondria. In the first step, the acetylation of the ${\beta}$-hydroxyl of L-serine by acetyl-CoA in the existence of SAT and finally, OASTL triggers ${\alpha}$, ${\beta}$-elimination of acetate from OAS and bind $H_2S$ to catalyze the synthesis of Cys. Mimosine synthase, one of the isozymes of the OASTLs, is able to synthesize Mim with 3-hydroxy-4-pyridone (3H4P) instead of $H_2S$ for Cys in the last step. Thus, the aim of this study was to clone and characterize the cytosolic (Cy) OASTL gene from L. leucocephala, express the recombinant OASTL in Escherichia coli, purify it, do enzyme kinetic analysis, perform docking dynamics simulation analysis between the receptor and the ligands and compare its performance between Cys and Mim synthesis. Cy-OASTL was obtained through both directional degenerate primers corresponding to conserved amino acid region among plant Cys synthase family and the purified protein was 34.3KDa. After cleaving the GST-tag, Cy-OASTL was observed to form mimosine with 3H4P and OAS. The optimum Cys and Mim reaction pH and temperature were 7.5 and $40^{\circ}C$, and 8.0 and $35^{\circ}C$ respectively. Michaelis constant (Km) values of OAS from Cys were higher than the OAS from Mim. Inter fragment interaction energy (IFIE) of substrate OAS-Cy-OASTL complex model showed that Lys, Thr81, Thr77 and Gln150 demonstrated higher attraction force for Cys but 3H4P-mimosine synthase-OAS intermediate complex showed that Gly230, Tyr227, Ala231, Gly228 and Gly232 might provide higher attraction energy for the Mim. It may be concluded that Cy-OASTL demonstrates a dual role in biosynthesis both Cys and Mim and extending the knowledge on the biochemical regulatory mechanism of mimosine and cysteine.

  • PDF