• Title/Summary/Keyword: glutathione production

Search Result 444, Processing Time 0.026 seconds

Dietary Tea Catechin Inclusion Changes Plasma Biochemical Parameters, Hormone Concentrations and Glutathione Redox Status in Goats

  • Zhong, Rongzhen;Xiao, Wenjun;Ren, Guopu;Zhou, Daowei;Tan, Chuanyan;Tan, Zhiliang;Han, Xuefeng;Tang, Shaoxun;Zhou, Chuanshe;Wang, Min
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1681-1689
    • /
    • 2011
  • The beneficial effects of tea catechins (TCs) are related not only to their antioxidant potential but also to the improvement of animal meat quality. In this study, we assessed the effects of dietary TC supplementation on plasma biochemical parameters, hormone responses, and glutathione redox status in goats. Forty Liuyang goats were randomly divided into four equal groups (10 animals/group) that were assigned to four experimental diets with TC supplementation at 4 levels (0, 2,000, 3,000 or 4,000 mg TC/kg DM feed). After a 60-day feeding trial, all goats were slaughtered and sampled. Dietary TC treatment had no significant effect on blood biochemical parameters, however, low-density lipoprotein cholesterol (p<0.001), triglyceride (p<0.01), plasma urea nitrogen (p<0.01), and glucose (p<0.001) decreased and total protein (p<0.01) and albumin (p<0.05) increased with the feeding time extension, and day 20 was the turning point for most of changes. Interactions were found in glutathione (p<0.001) and the ratio of reduced and oxidized glutathione (p<0.05) in whole blood between treatment and feeding time. Oxidized glutathione in blood was reduced (p<0.05) by 2,000 mg TC/kg feed supplementation, and a similar result was observed in longissimus dorsi muscle. Though plasma glutathione peroxidase (p<0.01) and glutathione reductase (p<0.05) activities were affected by treatment and feeding time interactions, and glutathione S-transferases activity increased with feeding day extension, no changed values appeared in longissimus dorsi muscle. In conclusion, dietary TC supplementation affected the concentrations of some blood metabolites and accelerated GSH depletion in the blood of goats. In terms of less high-density lipoprotein cholesterol, the highest insulin and IGF-I concentrations, the highest ratio of reduced and oxidized glutathione in plasma, the dosage of 2,000 mg TC/kg feed might be desirable for growing goats to prevent glutathione depletion and keep normal physiological metabolism.

Effect of Trolox C on Hypoxia/Reoxygenation-Induced Injury in Isolated Perfused Rat Liver

  • Lee, Sun-Mee;Cho, Tai-Soon
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.471-475
    • /
    • 1997
  • Livers isolated from 18 hours fasted rats were subjected to N$_{2}$ hypoxia (for 45 min) followed by reoxygenation (for 45 min). The perfusion medium used was Krebs-Henseleit bicarbonate buffer (KHBB, pH 7.4). Lactate and alanine were added as gluconeogenic and ureagenic substrates and Trolox C was also added to perfusate. Oxygen consumption, lactate dehydrogenase (LDH), alanine transaminase (ALT), total glutathione, oxidized glutathione, bile flow, glucose and urea were measured. After hypoxia oxygen consumption significantly dropped but Trolox C had no influence on this decrease. ALT and LDH were significantly increased by hypoxia/reoxygenation. This increase was markedly attenuated in the presence of Trolox C. The total glutathione and oxidized glutathione efflux increased following hypoxia, which were prevented by the treatment of Trolox C. Bile flow rate decreased following hypoxia/reoxygenation but did not continue to decrease in the reoxygenation phase by Trolox C. Following hypoxia/reoxygenation glucose and urea releases decreased. Trolox C had no influence on inhibition of glucose and urea production. These results suggest that Trolox C protected the liver cells against hypoxia/reoxygenation injury, yielding further evidence for a causative role of oxidative stress in this model.

  • PDF

Effects of Panax Ginseng on the Development of Morphine Tolerance and Dependence

  • Kim, Hack-Seang;Oh, Ki-Wan;Park, Woo-Kyu;Shigeru Yamano;Satoshi Toki
    • Proceedings of the Ginseng society Conference
    • /
    • 1987.06a
    • /
    • pp.38-46
    • /
    • 1987
  • The present study was undertaken to determine the inhibitory effects of orally administered ginseng saponins (GS), protopanaxadiol saponins(PD) and protopanaxatriol saponins(PT) on the development of morphine induced tolerance and physical dependence in mice, and to determine the increases in the loss of morphine tolerance and dependence. The study also sought to determine the hepatic glutathione contents, which are closely related to the degree of detoxication of morphinone, a novel metabolite of morphine, and the effects of ginseng saponins on morphine 6-dehydrogenase. The results of the present study showed that GS, PD and PT administered orally inhibited the development of morphine-induced tolerance and dependence. GS, PD and PT, however, increased the loss of morphine tolerance and dependence. GS, PD and PT inhibited the reduction of hepatic glutathione concentration in mice treated chronically with morphine, and the activity of morphine 6-dehydrogenase. So we hypothesized that these results were partially due to the dual action of the test drugs, the inhibition of morphine production and the activation in morphine-glutathione conjugation due to the increased glutathione level for detoxication.

  • PDF

Hepatotoxic Effect of 1-Bromopropane and Its Conjugation with Glutathione in Male ICR Mice

  • Lee Sang Kyu;Jo Sang Wook;Jeon Tae Won;Jun In Hye;Jin Chun Hua;Kim Ghee Hwan;Lee Dong Ju;Kim Tae-Oh;Lee Eung-Seok;Jeong Tae Cheon
    • Archives of Pharmacal Research
    • /
    • v.28 no.10
    • /
    • pp.1177-1182
    • /
    • 2005
  • The hepatotoxic effects of 1-bromopropane (1-BP) and its conjugation with glutathione were investigated in male ICR mice. A single dose (1000 mg/kg, po) of 1-BP in corn oil to mice significantly increased serum activities of alanine aminotransferase and aspartate aminotransferase. Glutathione (GSH) content was dose-dependently reduced in liver homogenates 12 h after 1-BP treatment. In addition, 1-BP treatment dose-dependently increased levels of S-pro-pyl GSH conjugate at 12 h after treatment, as measured by liquid chromatography-electro-spray ionization tandem mass spectrometry. The GSH conjugate was maximally increased in liver at 6 h after 1-BP treatment (1000 mg/kg), with a parallel depletion of hepatic GSH content. Finally, 1-BP induced the production of malondialdehyde in liver. The present results suggest that 1-BP might cause hepatotoxicity, including lipid peroxidation via the depletion of GSH, due to the formation of GSH conjugates in male ICR mice.

Therapeutic Efficacy of Methanol Extract of Bidens tripartita in HT22 Cells by Neuroprotective Effect

  • Yerim Son;Choong Je Ma
    • Natural Product Sciences
    • /
    • v.29 no.2
    • /
    • pp.67-73
    • /
    • 2023
  • Oxidative stress brings about apoptosis through various mechanisms. In particular, oxidative stress in neuronal cells can causes a variety of brain diseases. This study was conducted to investigate the effect of Bidens tripartita on oxidative stress in neuronal cells. B. tripartita has traditionally been used in Russia as a medicine for diseases such as rhinitis, angina and colitis. Over-production of glutamate induces oxidative stress. When the oxidative stress occurs in the cells, reactive oxygen species (ROS) and Ca2+ increase. In addition, the abrupt decline of mitochondrial membrane potential and the decrease of glutathione related enzymes such as glutathione reductase (GR) and glutathione peroxidase (GPx) are also observed. The samples used in the experiment showed cytoprotective effect in the MTT assay. It also lowered the ROS and Ca2+ level, and increased degree of mitochondrial membrane potential, GR and GPx. As a result, B. tripartita had a positive effect against oxidative stress. Thus, it is expected to have potential for treatment and prevention of degenerative brain diseases such as Alzheimer's disease.

Production of Glutathione by yeast and Process Monitoring (효모에 의한 글루타치온의 생산과 공정 모니터링)

  • 김춘광;이종일
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.192-199
    • /
    • 2004
  • In this work the production of glutathione (GSH) by yeast Saccharomyces cerevisiae and the monitoring of the process were studied. In shaking culture the production of GSH was high at initial pH value of 4 and at temperature of 30$^{\circ}C$. But when L-cysteine was added to the culture medium at the beginning of the cultivation, the productivity of GSH was low. In case 0,5% (v/v) of L-cysteine, glycine and glutamic acid were introduced to the culture medium in the exponential cell growth phase, high concentration of GSH (about 90 mg/L) was produced in the bioreactor. A fed-batch operation with stepwise glucose feeding strategy allowed to produce 102 mg/L of GSH. The cultivation processes were on-line monitored by a 2-dimensional fluorescence sensor. A few off-line data such as cell growth, cystein concentration, phosphate concentration and GSH productivity could be well correlated to the fluorescence intensity of some combinations of excitation and emission wavelengths.

The Protective Effect of Chlorophyll a Against Oxidative Stress and Inflammatory Processes in LPS-stimulated Macrophages

  • Park, Ji-Young;Park, Chung-Mu;Kim, Jin-Ju;Noh, Kyung-Hee;Cho, Chung-Won;Song, Young-Sun
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.205-211
    • /
    • 2007
  • This study was designed to investigate the suppressive effect of chlorophyll a on nitric oxide (NO) production and intracellular oxidative stress. In addition, chlorophyll a regulation of nuclear factor (NF) ${\kappa}B$ activation and inducible NO synthase (iNOS) expression were explored as potential mechanisms of NO suppression in a lipopolysaccharide (LPS)-stimulated macrophage cell line. RAW 264.7 murine macrophages were preincubated with various concentrations ($0-10\;{\mu}g/ mL$) of chlorophyll a and stimulated with LPS to induce oxidative stress and inflammatory response. Treatment with chlorophyll a reduced the accumulation of thiobarbituric acid-reactive substances (TBARS), enhancing glutathione level and the activities of antioxidative enzymes including superoxide dismutase, catalase, glutathione peroxidase (GSH-px), and glutathione reductase in LPS-stimulated macrophages compared to LPS-only treated cells. NO production was significantly suppressed in a dose-dependent manner (p<0.05) with an $IC_{50}$ of $12.8\;{\mu}g/mL$. Treatment with chlorophyll a suppressed the levels of iNOS protein and its mRNA expression. The specific DNA binding activities of NFkB on nuclear extracts from chlorophyll a treated cells were significantly suppressed in a dose-dependent manner with an $IC_{50}$ of $10.7\;{\mu}g/mL$. Chlorophyll a ameliorates NO production and iNOS expression through the down-regulation of NFkB activity, which may be mediated by attenuated oxidative stress in RAW 264.7 macrophages.

Effect of Panax ginseng on the Development and Loss of Morphine Tolerance and Dependence (인삼이 몰핀의 내성 및 의존성 형성에 미치는 영향)

  • Kim Hack Seang;Oh Ki Wan
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.151-155
    • /
    • 1988
  • The present study was undertaken to determine the inhibitory effects of orally administered ginseng saponins(SP), protopanaxadiol saponins (PD), and protopanaxatriol saponins(PT) on the development of morphine-induced tolerance and physical dependence in mice. The study also sought to determine the hepatic glutathione contents. which are closely related to the degree of detoxification of mine the effects of GS on morphine 6-dehydrogenase, which catalyzes the production of morphinone from morphine, and the roles of spinal descendign inhibitory systems in the production of antagonism. The results of the present study showed that GS, PD and PT administered orally inhibited the development of morphine induced tolerance and dependence. GS. PD and PT inhibited the reduction of hepatic glutathione concentration in mice treated chronically with morphine and the activity of morphine 6-dehydrogenase, and the activation of spinal descending inhibitory systems was inhibited by GS. So we hypothesized that the results were partially due to the dual action of the test drugs, the inhibition of morphinone production and the activated formation of morphinone-glutathinone conjugation, and the inhibition of the activatin of apinal descending inhibitory systems and the others.

  • PDF

YH439, a Hepatoprotective Agent, Suppresses Cytokines and Nitric Oxide Production in LPS-primed Rats Administered with $CCL_4$ ($CCI_4$와 Lipopolysaccharide로 유도한 흰쥐 간 독성에 대한 YH439의 방어작용 : cytokines 및 nitric oxide 생성의 억제)

  • 김연숙;이종욱;김낙두
    • YAKHAK HOEJI
    • /
    • v.43 no.2
    • /
    • pp.198-207
    • /
    • 1999
  • The aim of the present investigation was to examine whether YH439, a hepatoprotective agent, exerts protective effect against hepatotoxicity and reduces the production of cytokines and NO in lipopolysaccharide (LPS)-primed rats with carbon tetrachloride ($CCl_4$). Administration of LPS following a single dose of CCl4 injection resulted in remarkable elevations of the serum $TNF{\alpha},{\;}IL-l{\beta$ and IL-6 level. The serum NO level was moderately elevated and severe liver damage was evidenced by increases in serum alanine aminotransferase (ALT) and sorbitol dehydrogenase (SDH) activities. YH439 decreased the levels of TNF, $IL-l{\beta}$, IL-6, ALT, SDH as well as NO in the serum elevated by CCl4+LPS in a dose-dependent manner. Inducible nitric oxide synthase (iNOS) level was decreased in the liver of rats treated with YH439. The increased iNOS activity induced by LPS and $interferon-{\gamma}$ was significantly decreased in RAW 264.7 cells by YH439 treatment. YH439 increased the GSH level decreased by $CCl_4+LPS$ and suppressed the ratio of GSSG/GSH. The reduction of hepatotoxicity by YH439 may associated with the decrease in the production of cytokines as well as suppression of iNOS protein in conjunction with an increase in the GSH level.

  • PDF

Increased antioxidant enzyme activities and scavenging effect of oxygen free radicals by Jwagyuyeum and Woogyuyeum (좌귀음(左歸飮)과 우귀음(右歸飮)에 의(依)한 활성(活性) 산소류(酸素類)의 소거작용(消去作用)과 항산화(抗酸化) 효소계(酵素系)의 활성(活性) 증가(增加) 효과(效果)에 대(對)한 연구(硏究))

  • Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.17 no.1 s.31
    • /
    • pp.21-36
    • /
    • 1996
  • This study was undertaken to examine the effect of Jwagyuyeum and Woogyuycum, being known to reinforce Kidney-yin and yang, on the activities of endogenous antioxidant enzymes and the production of oxygen free radicals in the liver and kidney tissues, Alterations in enzyme activities were observed after in vivo treatment in rats, Jwagyuyeum and Woogyuyeum caused a significant increase in the activities of superoxide dismutase(SOD) and catajase Jwagyuyeum significantly increased the activity of glutathione peroxidase in both liver and kidney, but the enzyme activity was not significantly altered by Woogyuyeum. Treatment in vitro of Jwagyuyeum and Woogyuyeum decreased the production of oxygen free radicals in a dose-dependent fashion. These results suggest that Jwagyuyeum and Woogyuyeum stimulate the activities of antioxidant enzymes and inhibit directly the production of oxygen free radicals. These effects of both herbs may contribute to prevent the oxygen free radical-induced impairment of cell function.

  • PDF