• Title/Summary/Keyword: glutamate-rich

Search Result 18, Processing Time 0.023 seconds

Role of Organic Spices in the Preservation of Traditionally Fermented Kunun-zaki

  • Williana, N. Mokoshe;Babasola, A. Osopale;Cajethan, O. Ezeamagu;Fapohunda, Stephen O.
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.192-200
    • /
    • 2021
  • Kunun-zaki, produced by submerged fermentation of a combination of millet and sorghum, is a popular beverage in Northern Nigeria. Owing to the nature of the process involved in its production, kunun-zaki is highly susceptible to contamination by food spoilage microorganisms, leading to inconsistent quality and short shelf-life. In this study, we investigated various food spices, including cinnamon, garlic, and nutmeg, as potential preservatives that could be used to extend kunun-zaki shelf-life. Kunun-zaki varieties were fermented with each of these spices mentioned above and subjected to bacterial, nutritional, sensory, and quality maintenance assessments (using a twelve-member sensory panel to evaluate the organoleptic properties of kunun-zaki). Bacterial counts in the final products ranged between 105-7 CFU/ml. We identified two bacterial genera, Weissella and Enterococcus, based on partial 16S rRNA gene amplicon sequencing. Three amino acids, namely leucine, aspartate, and glutamate, were abundant in all kunun-zaki varieties, while the total essential amino acid content was above 39%, suggesting that kunun-zaki could potentially be considered as a protein-rich food source both for infants and adults. The kunun-zaki products were also rich in carbohydrates, crude proteins, ash, crude fiber, and fat, with contents estimated as 81-84, 8-11, 0.8-4.0, 2.9-3.58, and 5.1-6.3%, respectively. However, this nutritional content depreciated rapidly after 24 h of storage, except for kunun-zaki fermented with garlic, which its crude protein and fat content was maintained for up to 48 h. Our results revealed that organic spices increased the nutritional content of the kunun-zaki varieties and could be potentially be used as natural preservatives for enhancing the kunun-zaki shelf-life. However, garlic might be considered a better alternative based on our preliminary investigation. The presence of the isolated microorganisms in the analyzed kunun-zaki samples should be highlighted to raise awareness on the possible health hazards that could arise from poor handling and processing techniques.

Production of GABA-rich Tomato Paste by Lactobacillus sp. Fermentation (유산균 발효에 의한 GABA 함유 토마토 페이스트의 생산)

  • Cho, Seok-Cheol;Kim, Dong-Hyun;Park, Chang-Seo;Koh, Jong-Ho;Pyun, Yu-Ryang;Kook, Moo-Chang
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.1
    • /
    • pp.26-31
    • /
    • 2012
  • For the purpose of production of GABA-rich tomato paste, this study was carried out to investigate GABA producing lactic acid bacteria from Korean traditional fermented food, Kimchi and optimize the culture conditions. As a result of fermentation, Lactobacillus brevis B3-20 among lactic acid bacteria isolated at the pre-experiments was the best producer of GABA at the tomato paste medium with 50%(wet-base) levels of dionized water. At the result of fermentation on the tomato paste medium with 0.5%(w/w) yeast extract, as a source of nitrogen, 3%(w/w) MSG(monosodium glutamate) and dionized water(the ratio of tomato paste and water was 2:8), Lb. brevis B3-20 produced the maximum GABA concentration, 143.38 mM. GABA-rich tomato paste showed the activity of free radical scavenging. Because GABA-rich tomato paste have functional ingredients such as ascorbic acid, lycopene, carotenoid, as well as GABA by lactic acid bacteria fermentation, GABA-rich tomato paste can be considered high functional materials.

Plasmodium falciparum Genotype Diversity in Artemisinin Derivatives Treatment Failure Patients along the Thai-Myanmar Border

  • Congpuong, Kanungnit;Hoonchaiyapoom, Thirasak;Inorn, Kornnarin
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.6
    • /
    • pp.631-637
    • /
    • 2014
  • Genetic characteristics of Plasmodium falciparum may play a role in the treatment outcome of malaria infection. We have studied the association between diversity at the merozoite surface protein-1 (msp-1), msp-2, and glutamate-rich protein (glurp) loci and the treatment outcome of uncomplicated falciparum malaria patients along the Thai-Myanmar border who were treated with artemisinin derivatives combination therapy. P. falciparum isolates were collected prior to treatment from 3 groups of patients; 50 cases of treatment failures, 50 recrudescences, and 56 successful treatments. Genotyping of the 3 polymorphic markers was analyzed by nested PCR. The distribution of msp-1 alleles was significantly different among the 3 groups of patients but not the msp-2 and glurp alleles. The allelic frequencies of K1 and MAD20 alleles of msp1 gene were higher while RO33 allele was significantly lower in the successful treatment group. Treatment failure samples had a higher median number of alleles as compared to the successful treatment group. Specific genotypes of msp-1, msp-2, and glurp were significantly associated with the treatment outcomes. Three allelic size variants were significantly higher among the isolates from the treatment failure groups, i.e., $K1_{270-290}$, $3D7_{610-630}$, $G_{650-690}$, while 2 variants, $K1_{150-170}$, and $3D7_{670-690}$ were significantly lower. In conclusion, the present study reports the differences in multiplicity of infection and distribution of specific alleles of msp-1, msp-2, and glurp genes in P. falciparum isolates obtained from treatment failure and successful treatment patients following artemisinin derivatives combination therapy.

Combined transcriptome and proteome analyses reveal differences in the longissimus dorsi muscle between Kazakh cattle and Xinjiang brown cattle

  • Yan, XiangMin;Wang, Jia;Li, Hongbo;Gao, Liang;Geng, Juan;Ma, Zhen;Liu, Jianming;Zhang, Jinshan;Xie, Penggui;Chen, Lei
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1439-1450
    • /
    • 2021
  • Objective: With the rapid development of proteomics sequencing and RNA sequencing technology, multi-omics analysis has become a current research hotspot. Our previous study indicated that Xinjiang brown cattle have better meat quality than Kazakh cattle. In this study, Xinjiang brown cattle and Kazakh cattle were used as the research objects. Methods: Proteome sequencing and RNA sequencing technology were used to analyze the proteome and transcriptome of the longissimus dorsi muscle of the two breeds of adult steers (n = 3). Results: In this project, 22,677 transcripts and 1,874 proteins were identified through quantitative analysis of the transcriptome and proteome. By comparing the identified transcriptome and proteome, we found that 1,737 genes were identified at both the transcriptome and proteome levels. The results of the study revealed 12 differentially expressed genes and proteins: troponin I1, crystallin alpha B, cysteine, and glycine rich protein 3, phosphotriesterase-related, myosin-binding protein H, glutathione s-transferase mu 3, myosin light chain 3, nidogen 2, dihydropyrimidinase like 2, glutamate-oxaloacetic transaminase 1, receptor accessory protein 5, and aspartoacylase. We performed functional enrichment of these differentially expressed genes and proteins. The Kyoto encyclopedia of genes and genomes results showed that these differentially expressed genes and proteins are enriched in the fatty acid degradation and histidine metabolism signaling pathways. We performed parallel reaction monitoring (PRM) verification of the differentially expressed proteins, and the PRM results were consistent with the sequencing results. Conclusion: Our study provided and identified the differentially expressed genes and proteins. In addition, identifying functional genes and proteins with important breeding value will provide genetic resources and technical support for the breeding and industrialization of new genetically modified beef cattle breeds.

Physical, chemical composition and umami compound of dried immature and mature roes of skipjack tuna (Katsuwonus pelamis)

  • Phetchthumrongchai, Thithi;Chuchird, Niti;Roytrakul, Sittiruk;Chintong, Sutasinee;Klaypradit, Wanwimol
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.7
    • /
    • pp.390-402
    • /
    • 2022
  • In this study we investigate physical and chemical characteristics of immature and mature skipjack tuna (Katsuwonus pelamis) roes in fresh and dried forms. Fresh roes were studied for histological structure and also dried by three methods: hot air drying (HD), vacuum drying (VD) and freeze drying (FD). The obtained roe powders were analysed for proximate composition, color value, fatty acid composition, amino acid profile, equivalent umami concentration (EUC) and protein pattern. Unyolked oocytes were more common in immature roes, while fully yolked oocytes were more common in mature roes. All dried tuna roes contained high content of protein and lipid (69.31%-70.55% and 11.14%-16.02%, respectively). The powders obtained by FD provided the highest lightness value (L*). The main fatty acid found in all roe powders was docosahexaenoic acid (DHA) (23.49%-27.02%). Glutamic acid, leucine, and aspartic acid were the three most abundant amino acids found in the powders (13.58-14.61, 8.06-8.42, and 7.81-8.39 g/100 g of protein, respectively). The mature roe powder obtained from HD provided the highest EUC value (73.09 g monosodium glutamate/100 g of samples). The protein band at molecular weight of 97 kDa (vitelline) represented the major protein. Therefore, dried tuna roe could be a functional ingredient source of protein and lipid rich in DHA and it also has potential to be used as taste enhancer with umami compound.

Role of Citrate Synthase in Acetate Utilization and Protection from Stress-Induced Apoptosis

  • Lee, Yong-Joo;Kang, Hong-Yong;Maeng, Pil Jae
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.39-41
    • /
    • 2008
  • The yeast Saccharomyces cerevisiae has been shown to contain three isoforms of citrate synthase (CS). The mitochondrial CS, Cit1, catalyzes the first reaction of the TCA cycle, i.e., condensation of acetyl-CoA and oxaloacetate to form citrate [1]. The peroxisomal CS, Cit2, participates in the glyoxylate cycle [2]. The third CS is a minor mitochondrial isofunctional enzyme, Cit3, and related to glycerol metabolism. However, the level of its intracellular activity is low and insufficient for metabolic needs of cells [3]. It has been reported that ${\Delta}cit1$ strain is not able to grow with acetate as a sole carbon source on either rich or minimal medium and that it shows a lag in attaining parental growth rates on nonfermentable carbon sources [2, 4, 5]. Cells of ${\Delta}cit2$, on the other hand, have similar growth phenotype as wild-type on various carbon sources. Thus, the biochemical basis of carbon metabolism in the yeast cells with deletion of CIT1 or CIT2 gene has not been clearly addressed yet. In the present study, we focused our efforts on understanding the function of Cit2 in utilizing $C_2$ carbon sources and then found that ${\Delta}cit1$ cells can grow on minimal medium containing $C_2$ carbon sources, such as acetate. We also analyzed that the characteristics of mutant strains defective in each of the genes encoding the enzymes involved in TCA and glyoxylate cycles and membrane carriers for metabolite transport. Our results suggest that citrate produced by peroxisomal CS can be utilized via glyoxylate cycle, and moreover that the glyoxylate cycle by itself functions as a fully competent metabolic pathway for acetate utilization in S. cerevisiae. We also studied the relationship between Cit1 and apoptosis in S. cerevisiae [6]. In multicellular organisms, apoptosis is a highly regulated process of cell death that allows a cell to self-degrade in order for the body to eliminate potentially threatening or undesired cells, and thus is a crucial event for common defense mechanisms and in development [7]. The process of cellular suicide is also present in unicellular organisms such as yeast Saccharomyces cerevisiae [8]. When unicellular organisms are exposed to harsh conditions, apoptosis may serve as a defense mechanism for the preservation of cell populations through the sacrifice of some members of a population to promote the survival of others [9]. Apoptosis in S. cerevisiae shows some typical features of mammalian apoptosis such as flipping of phosphatidylserine, membrane blebbing, chromatin condensation and margination, and DNA cleavage [10]. Yeast cells with ${\Delta}cit1$ deletion showed a temperature-sensitive growth phenotype, and displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e., ROS accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation, when exposed to heat stress. Upon long-term cultivation, ${\Delta}cit1$ cells showed increased potentials for both aging-induced apoptosis and adaptive regrowth. Activation of the metacaspase Yca1 was detected during heat- or aging-induced apoptosis in ${\Delta}cit1$ cells, and accordingly, deletion of YCA1 suppressed the apoptotic phenotype caused by ${\Delta}cit1$ mutation. Cells with ${\Delta}cit1$ deletion showed higher tendency toward glutathione (GSH) depletion and subsequent ROS accumulation than the wild-type, which was rescued by exogenous GSH, glutamate, or glutathione disulfide (GSSG). Beside Cit1, other enzymes of TCA cycle and glutamate dehydrogenases (GDHs) were found to be involved in stress-induced apoptosis. Deletion of the genes encoding the TCA cycle enzymes and one of the three GDHs, Gdh3, caused increased sensitivity to heat stress. These results lead us to conclude that GSH deficiency in ${\Delta}cit1$ cells is caused by an insufficient supply of glutamate necessary for biosynthesis of GSH rather than the depletion of reducing power required for reduction of GSSG to GSH.

  • PDF

Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway

  • Zhou, Wei;Quan, Juan-Hua;Gao, Fei-Fei;Ismail, Hassan Ahmed Hassan Ahmed;Lee, Young-Ha;Cha, Guang-Ho
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.2
    • /
    • pp.135-145
    • /
    • 2018
  • Due to the critical location and physiological activities of the retinal pigment epithelial (RPE) cell, it is constantly subjected to contact with various infectious agents and inflammatory mediators. However, little is known about the signaling events in RPE involved in Toxoplasma gondii infection and development. The aim of the study is to screen the host mRNA transcriptional change of 3 inflammation-related gene categories, PI3K/Akt pathway regulatory components, blood vessel development factors and ROS regulators, to prove that PI3K/Akt or mTOR signaling pathway play an essential role in regulating the selected inflammation-related genes. The selected genes include PH domain and leucine- rich-repeat protein phosphatases (PHLPP), casein kinase2 (CK2), vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), glutamate-cysteine ligase (GCL), glutathione S-transferase (GST), and NAD(P)H: quinone oxidoreductase (NQO1). Using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), we found that T. gondii up-regulates PHLPP2, $CK2{\beta}$, VEGF, GCL, GST and NQO1 gene expression levels, but down-regulates PHLPP1 and PEDF mRNA transcription levels. PI3K inhibition and mTOR inhibition by specific inhibitors showed that most of these host gene expression patterns were due to activation of PI3K/Akt or mTOR pathways with some exceptional cases. Taken together, our results reveal a new molecular mechanism of these gene expression change dependent on PI3K/Akt or mTOR pathways and highlight more systematical insight of how an intracellular T. gondii can manipulate host genes to avoid host defense.

Comparison of total parenteral nutrition-associated cholestasis according to amino acid mixtures in very low birth weight infants (총정맥영양 연관 담즙정체증)

  • Choi, Jin-Sung;Bae, Yun-Jin;Lee, Young Ah
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.9
    • /
    • pp.972-976
    • /
    • 2006
  • Purpose : The purpose of this study was to evaluate the effect of amino acid mixtures on incidence and severity of total parenteral nutrition associated-cholestasis(PNAC) in very low birth weight infants. Methods : Retrospective review of 63 very low birth weight infants(birth weight ${\leq}1,500g$) who received total parenteral nutrition(TPN) in our neonatal intensive care unit from January 2000 to December 2004 was performed. Patients were divided into 2 groups : Group I(n=32, Jan 2000-Jun 2002) and Group II(n=31, Jul 2002-Dec 2004), where infants in Group II received taurine and glutamic acid-rich amino acid mixtures. PNAC was defined as serum direct bilirubin(DB) level greater than 2.0 mg/dL. The incidence and severity of PNAC were compared between these groups. Results : The incidence of PNAC was significantly lower in Group II than in Group I(21.9% vs 6.5%, P<0.148). Maximum and mean DB levels were also significantly lower in Group II(P<0.05). Conclusion : The incidence and severity of PNAC in very low birth weight infants may be reduced with different composition of amino acid mixtures in TPN. Further prospective randomized controlled studies are needed to determine an ideal composition of acid mixtures to prevent the development of PNAC.