• Title/Summary/Keyword: glucuronic acid

Search Result 84, Processing Time 0.025 seconds

Effect of Glucuronic Acid Derivertives Isolated from Xylan on Antioxidative Defense System in Rat White Gastrocnemius after Aerobic Exercise (Xylan으로부터 단리한 Glucuronic Acid가 유산소 운동 후 흰쥐 백근의 항산화계에 미치는 영향)

  • 김관유;이순재
    • Journal of Nutrition and Health
    • /
    • v.35 no.7
    • /
    • pp.729-736
    • /
    • 2002
  • The purpose of this study was to investigate the effects of glucuronic acid (isolated from xylan) on antioxidative defense system in rat after aerobic exercise. The glucuronic acid was isolated from xylan. Sprague-Dawley male rats weighing 150$\pm$10 g were randomly assigned to one normal group and three exercise training groups. Exercise training groups were classified to T (glucuronic acid free diet), TU (250 mg glucuronic acid/kg bw) and 2TU (500 mg glucuronic acid/kg bw) according to the level of glucuronic acid supplementation before exercise training. The experimental rats in exercise training groups (T, TU and 2TU) were exercised on glucuronic acid supplementation or rats in normal group (N) were confined in cage for 4 weeks. And rats were sacrificed with an overdose of pentobarbital injection just after running. Body weight, food intakes and food efficiency ratio (FER) were lower in the exercise training group than in the normal group. White gastrocnemius xanthine oxidase (XOD) activity in the T group was 85% greater than that of the normal group, whereas in the TU and 2TU groups it did not differ from the normal group. White gastrocnemius superoxide dismutase (SOD) activity in T group, that was decreased by 22% compared with that of N group, but those of TU and 2TU groups were increased by 38% and 42%, respectively, compared with that of T group. White gastrocnemius glutathione peroxidase (GSHpx) activity in T group, that was decreased by 42% compared with that of N group, but those of TU and 2TU groups were increased by 67% and 68%, respectively, compared with that of T group. Glutathione S-transferase (GST) activity of white gastrocnemius in N group was not significantly different from that in the T and TU groups, but 2TU group were increased by 12%. Contents of thiobarbituric acid reactive substance (TBARS) in T group was increased by 54%, compared with that of normal group but those of TU group and 2TU group were lower 44% and 36% than that of T group. In conclusion, the effects of glucuronic acids in exercise training rats would appear to reduce peroxidation of tissue as an antioxidative defense mechanism.

Characteristics of xylose and glucuronic acid at concentrated sulfuric acid hydrolysis (진한 황산 가수분해 반응조건에서 xylose와 glucuronic acid의 반응 특성)

  • Cho, Dae-Haeng;Kim, Yong-Hwan;Park, Jong-Moon;Sim, Jae-Hoon;Kim, Byung-Ro;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.3
    • /
    • pp.9-14
    • /
    • 2012
  • Formed fermentation inhibitors during acid saccharification leads to poor alcohol production based on lignocellulosic bio-alcohol production process. In this work, it is focused on the formation of fermentation inhibitors from xylan, which is influenced by reaction tempearature and time of acidic sacharifiaction of xylose and glucuronic acid. In second step of concentrated acid hydrolysis, part of xylose and glucuronic acid was converted to furfuraldehyde and formic acid by dehydration and rearrangement reactions. Furfural was form from xylose, which was highly sensitive to reaction temperature. Formic acid was come from both xylose and glucuronic acid, which supposed to main inhibitor in biobutanol fermentation. Reaction temperature of second hydrolysis was main variables to control the furfural and formic acid generation. Careful control of acid saccharification can reduce generation of harmful inhibitors, especially second step of concentrated sulfuric acid hydrolysis process.

Effects of Glucuronic Acid Derivertives Isolated from Xylan an Antioxidative Defense System and Muscle Fatigue Recovery after Aerobic Exercise (Xylan으로부터 단리한 Glucuronic Acid의 유산소 운동 후 항산화 작총 및 근피로 회복효과)

  • 최향미;이수천;류승필;이인구;주길재;이순재
    • Journal of Nutrition and Health
    • /
    • v.34 no.8
    • /
    • pp.872-880
    • /
    • 2001
  • The purpose of this study was to investigate the effects of glucuronic acid on antioxidative defense system and recovery of muscle fatigue in rat artier aerobic exercise. Sprague-Dawley male rats weighing 150 $\pm$ 10g were randomly assigned to one normal(N) group and three exercise training groups. Exercise training groups were classified into glucuronic acid free intubation group(T group), 250mg glucuronic acid/kg bw intubation group(TU group), and 500 mg glucuronic acid/kg bw intubation group(2TU group) according to glucuronic acid supplementation level. The glucuronic acids were administered to rats by oral intubation before exercise training. The experimental rats in exercise training groups(T, TU and 2TU) were exercised on glucuronic acid supplementation or rats in normal group were confined in cage for 4 weeks. And rats were sacrificed with an overdose of pentobarbital injection just after running. Liver xanthine oxidase(XOD) activities were not significantly different among four groups. The activity of superoxide dismutase(SOD) in T group was no significant difference from N group, but those of TU and 2TU groups were increased by 9% and 18%, respectively, compared with that of T group. Liver glutathione peroxidase(GSHpx) activites of T and TU groups showed a similar tendency to that of normal group, but increase 17% in 2TU group compared with normal group. The ratio of GSH/GSSG in liver of T group was lower than that of normal group, but those of TU and 2TU groups were a similar tendency to that of normal group. Contents of thiobarbituric acid reactive substance(TBARS) in T group was increased by 47%, compared with that of normal group but those of TU group and 2TU group were lower 27% and 35%, respectively, compared with that of T group. The contents of glycogen in soleus muscle significantly lower in all three trained exercise groups than that of normal group, but there were no significant differences among the trained exercise groups. Contents of hepatic glycogen in T group were decreased 27% compared with those of normal group while those of TU and 2TU groups were the same as normal group levels. The contents of serum lactic acid in T group were increased 240% of normal group, but hose of TU and 2TU groups were decreased 38%, 39%, respectively, by glucuronic acid supplementations, compared with that of T group. In conclusion, the effects of glucuronic acids in exercise training rats would appear to reduce peroxidation of tissue as an antioxidative defense mechanism and promote recovery of muscle fatigue.

  • PDF

Effects of Glucuronic Acid Derivative Isolated from Xylan on Antioxidative Defense System in Rat Red Gastrocnemius after Aerobic Exercise

  • Kim, Mi-Ji;Rhee, Soon-Jae
    • Nutritional Sciences
    • /
    • v.6 no.3
    • /
    • pp.135-140
    • /
    • 2003
  • The purpose of this study was to investigate the effects of glucuyonic acid (isolated from xylan) on the antioxidative defense systems of red gastrocnemius in rats after aerobic exercise. The glucuronic acid was isolated from xylan. Male Sprague-Dawley vats weighing 150$\pm$10 g were randomly assigned to one normal group and three exercise training groups. The exercise training groups were classified as T (glucuronic acid-free diet), TU (250mg glucuronic acid/kg bw) and 2TU (500mg glucuronic acid /kg bw) according to the level of glucuvonic acid supplementation. The rats in the normal group were confined to a cage for 4 weeks. The rats in the exercise training groups ran on a treadmill for 30 min/day, 5 days/week at a speed of 28 m/min (7% incline) for 4 weeks. Glutamate oxaloacetate transaminase (GOT) activity in the exercise training groups increased significantly compared with that of the normal group. That of the TU and 2TU groups decreased significantly compared with that of the T group. Xanthine oxidase (XOD) activity in the T group increased significantly to 74% compared with that of the normal group. That of the 2TU group decreased to 42% compared with that of the T group, thus recovering to a normal level. Superoxide dismutase (SOD) activity in the T group decreased to 32% compared with that of the normal group. That of the TU and 2TU groups increased to 28% and 34%, respectively, compared with that of the T group. Glutathione peroxidase (GSHpx) activity in the T group decreased to 16% compared with that of the normal group, but that of the TU group increased to 17% compared with that of the T group. Glutathiones transferase (GST) activity in the T group decreased to 11% compared with that of the normal group, but that of the TU and 2TU groups Increased to 28% and 31%, respectively, compared with that of the T group. The contents of thiobarbituric acid reactive substances (TBARS) in the T group increased to 81% compared with that of the normal group, but the glucuronic supplementation group recovered to the normal level. In conclusio, the effects of glucuronic acid on red gastrocnemius in rats engaged in exercise training would appear to be to reduced lipid peroxidation of tissue as an antioxidative defense mechanism.

Streptococcus LJ-22, a human intestinal bacterium, transformed glycyrrhizin to 18$\beta$-glycyrrhetinic acid monoglucuronide

  • Kim, Dong-Hyun;Lee, Seoung-Won;Park, Hae-Young;Han, Myung-Joo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.125-125
    • /
    • 1998
  • Glycyrrhizin (18$\beta$-glycyrrhetic acid $\beta$-D-glucuronyl a-D-glucuronic acid, GL), a main component of liquore extract (Glycyrrhiza glabra), is ingested orally as a component in the oriental medicine. By human intestinal bacteria, glycyrrhizin (18$\beta$-glycyrrhetinic acid $\beta$-D-glucuronyl a-D-glucuronic acid, GL) was metabolized to glycyrrhetinic acid (GA): main pathway metabolizing GL to GA by glucuronidases of Bacteroides J-37 (Kim et al., 1997) and Eubacterium sp strain GLH (Akao et al., 1987) and minor pathway metabolizing GL to GA via 18$\beta$-glycyrrhetic acid D-glucuronic acid (GAMG) by $\beta$-glucuronidase of Streptococcus LJ-22 and glucuronidases of Bacteroides J-37 / E. coli. $\beta$-Glucuronidase from Streptococcus LJ-22 hydrolyzed GL to GAMG, not GA. $\beta$-Glucuronidase of Streptococcus LJ-22 hydrolyzed $\beta$-glucuronic acid conjugates of polysaccharides rather than aglycone-$\beta$-glucuronides Optimal pH of Streptococcus LJ-22 $\beta$-glucuronidase was 5-6 and its molecular weight was 250 kDaltons. Km for GL was 0.37mM.

  • PDF

Synthesis of Glucuronic Acid Conjugates of Linoleic Acid Metabolites (리놀레산 대사체들의 글루쿠론산 결합화합물 합성)

  • Kang, Dong Wook
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.738-743
    • /
    • 2013
  • Linoleic acid and its metabolites have various medicinal effects with carboxylic acid functional group. General carboxylic acid compounds are discovered as glucuronide metabolites by UGT glucuronosyl transferase at liver. Consequently, glucuronides of linoleic acid metabolites are expected as potent conjugated metabolite. A previous study reported two epoxide metabolites and two dihydroxy metabolites of linoleic acid. There are prepared their glucuronic acid conjugated compounds as potent linoleic acid metabolites.

Application of Glucuronic Acid with New Cosmetic Active Ingredient (새로운 노화 방지 성분으로서 글루쿠로닉 애씨드의 기능과 화장품 응용)

  • Lee Geun-Soo;Kim Jin-Wha;Lee Chun-Il;Pyo Hyeong-Bae;Lee Kong-Joo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.4 s.48
    • /
    • pp.471-477
    • /
    • 2004
  • Exposure to elevated temperatures, chemical (active oxigen), or physical stress (UV light) induces immediate physiological response, the expression of heat shock proteins in cells. Thus, cells with elevated Heat Shock Protein levels become more tolerant to stress conditions that are otherwise lethal. First, we studied on the new function of glucuronic acid (GA) as preventive material of skin aging. The application of the GA shows significant induction of Heat Shock Protein 70 kDa (HSP 70 kDa) in contrast to cells without it. GA at the concentration which can induce HSP 70 kDa, protects the cell death induced by second stress (heat shock and hydrogen peroxide) in NIH3T3 cells. Second, we studied on in vitro transdermal permeation characteristic of GA through the excised mouse skin. In this study, we compared the skin permeability of GA in water with O/W emulsion. As a result, skin permeation parameters of GA shows lag time 1.2 h, partition coefficient 0.114, permeation flult rate $0.83114 mg/cm^2/h.$ In case of lag time, O/W emulsion containing GA increase 2.48 h. Also, the total accumulation permeation content decreased in contrast to GA solution after 24 h. But it has long-term permeability of glucuronic acid. These results suggest that glucuronic acid could be a good cosmetic active ingredient.

Metabolism of glycyrrhizin and baicalin by human intestinal bacteria

  • Kim, Dong-Hyun;Jang, Il-Sung;Lee, Hyeong-Kyu;Jung, Eun-Ah;Lee, Kyeu-Yup
    • Archives of Pharmacal Research
    • /
    • v.19 no.4
    • /
    • pp.292-296
    • /
    • 1996
  • By human intestinal bacteria, glycyrrhizin (18${\beta}$-glycyrrhetic acid ${beta}$-D-glucuronyl.${\alpha}$-D-glucuronic acid, GL) and baicalin (baicalein ${\beta}$-D-glucuronic acid) were metabolized to glycyrrhetinic acid and baicalin, respectively. However, .${\alpha}$-glucuronidase of Bacteroides JY-6 isolated from human intestinal bacteria hydrolyzed GL or 18.${\beta}$-glycyrrhetinic acid ..${\alpha}$-D-glucuronic acid to 18${\beta}$-glycyrrhetic acid but did not baicalin. However, E. coli ${\beta}$-glucironidase from human intestinal bacteria hydrolyzed baicalin to baicalein, but did not GL.${\beta}$-Glucuronidase of mammalian tissues hydrolyzed both GL and baicalin.

  • PDF

Glycosyl-linkages of Acid Soluble Polysaccharide from Green Laver, Enteromopha prolifera (가시파래 산성 수용성 다당의 구성당 결합 특성)

  • Koo Jae Geun;Choi Yong Seok;Ha Jin Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.5
    • /
    • pp.524-528
    • /
    • 2002
  • Green layer, Enteromorpha prolifera, is regarded as one of important materials for food processing in Korea. The acidic water-soluble polysaccharide (CPC-PS) isolated from the alga with hot water and cetylpyridium chloride was mainly constituted of rhamnose, xylose, uronic acid and sulfate. To determine the glycosyl-linkages and positions of sulfate by methylation, the CPC-PS was reduced and/or sulfates. A marked increase of glucose content in the reduced polysaccharide indicated that glucuronic acid was a major sugar in the polymer and sulfation was deduced to occur on O-3 of rhamnose and O-2 of xylose. According to the methylation analysis of the native, reduced, desulfated and reduced-desulfated polymers, CPC-PS mainly composed of 1,4- and 1,2,3-linked rhamnose 3-sulfate, 1,4-linked xylose 2-sulfate, 1,4-linked xylose and 1,4-linked glucuronic acid. Minor 1,4-linked rhamnose and 1,4,6-linked galactose residues were also detected.

Biological Synthesis of Baicalein Derivatives Using Escherichia coli

  • Han, Da Hye;Lee, Youngshim;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1918-1923
    • /
    • 2016
  • Two baicalein derivatives, baicalin and oroxylin A, were synthesized in this study. These derivatives exhibit diverse biological activities, such as anxiolytic and anticancer activities as well as memory enhancement. In order to synthesize baicalin from aglycon baicalein using Escherichia coli, we utilized a glycosyltransferase that regioselectively transfers glucuronic acid from UDP-glucuronic acid to the 7-hydroxy group of baicalein. To increase baicalin productivity, an araA deletion E. coli mutant, which accumulates UDP-glucuronic acid, was used, and ugd, which converts UDP-glucose to UDP-glucuronic acid, was overexpressed. Using these strategies, approximately $720.3{\mu}M$ baicalin was synthesized from $1,000{\mu}M$ baicalein. Oroxylin A was then synthesized from baicalein. Two O-methyltransferases (OMTs), ROMT-15 and POMT-9, were tested to examine the production of oroxylin A from baicalein. E. coli harboring ROMT-15 and E. coli harboring POMT-9 produced reaction products that had different retention times, indicating that they are methylated at different positions; the structure of the reaction product from POMT-9 was consistent with oroxylin A, whereas that from ROMT-15 was 7-O-methyl baicalein. Using E. coli harboring POMT-9, approximately 50.3 mg/l of oroxylin A ($177{\mu}M$) was synthesized from 54 mg/l baicalein ($200{\mu}M$).