• 제목/요약/키워드: glucose transporter

검색결과 205건 처리시간 0.028초

The use of ketogenic diet in special situations: expanding use in intractable epilepsy and other neurologic disorders

  • Lee, Mun-Hyang
    • Clinical and Experimental Pediatrics
    • /
    • 제55권9호
    • /
    • pp.316-321
    • /
    • 2012
  • The ketogenic diet has been widely used and proved to be effective for intractable epilepsy. Although the mechanisms underlying its antiepileptic effects remain to be proven, there are increasing experimental evidences for its neuroprotective effects along with many researches about expanding use of the diet in other neurologic disorders. The first success was reported in glucose transporter type 1 deficiency syndrome, in which the diet served as an alternative metabolic source. Many neurologic disorders share some of the common pathologic mechanisms such as mitochondrial dysfunction, altered neurotransmitter function and synaptic transmission, or abnormal regulation of reactive oxygen species, and the role of the ketogenic diet has been postulated in these mechanisms. In this article, we introduce an overview about the expanding use and emerging trials of the ketogenic diet in various neurologic disorders excluding intractable epilepsy and provide explanations of the mechanisms in that usage.

Decreased GLUT 4 mRNA Levels did not Related with Degree of Hyperglycemia in Skeletal Muscles of Streptozotocin-induced Diabetic Rats

  • Park, So-Young;Kim, Jong-Yeon;Kim, Yong-Woon;Lee, Suck-Kang
    • The Korean Journal of Physiology
    • /
    • 제30권2호
    • /
    • pp.231-236
    • /
    • 1996
  • In our previous study (Kim et al, 1991), GLUT 4 protein content correlated negatively with plasma glucose levels in skeletal muscles of STZ-induced diabetic rats. Thus, in this study, to confirm whether expression of GLUT 4 correlate negatively with degree of hyperglycemia, we measured levels of GLUT 4 mRNA in red and white gastrocnemius muscles in STZ-induced mild and severe diabetic rats. Rats were randomly assigned to control, mild, and severe diabetic groups, and the diabetes was induced by intraperitoneal administration of STZ. The experiment was carried out 10 days after STZ administration. Gastrocnemius red and white muscles were used fur the measurement of GLUT 4 expression. Plasma glucose levels of mild and severe diabetic rats were increased compared to control rats (control, mild, and severe diabetes; $6.4{\pm}0.32,\;9.4{\pm}0.68,\;and\;22.0{\pm}0.58$ mmol/L, respectively). Plasma insulin levels of mild and severe diabetic rats were decreased compared to control rats (control, mild, and severe diabetes; $198{\pm}37,\;l14{\pm}14,\;and\;90{\pm}15$ pmol/L, respectively). GLUT 4 mRNA levels of gastrocnemius red muscles in mild and severe diabetic rats were decreased compared to control rats ($64{\pm}1.2%\;and\;71{\pm}2.0%$ of control, respectively), but GLUT 4 mRNA levels in gastrocnemius white muscles were unaltered in diabetic rats. In summary, GLUT 4 mRNA levels were decreased in STZ-induced diabetic rats but did not correlated negatively with degree of hyperglycemia, and this result suggest that the regulatory mechanisms of decreased GLUT 4 mRNA levels are hypoinsulinemia and/or other metabolic factor but not hyperglycemia. And regulation of GLUT 4 expression in STZ-induced diabetes between red and white enriched skeletal muscles may be related to a fiber specific gene regulatory mechanism.

  • PDF

Allithiamine Exerts Therapeutic Effects on Sepsis by Modulating Metabolic Flux during Dendritic Cell Activation

  • Choi, Eun Jung;Jeon, Chang Hyun;Park, Dong Ho;Kwon, Tae-Hwan
    • Molecules and Cells
    • /
    • 제43권11호
    • /
    • pp.964-973
    • /
    • 2020
  • Recent studies have highlighted that early enhancement of the glycolytic pathway is a mode of maintaining the proinflammatory status of immune cells. Thiamine, a wellknown co-activator of pyruvate dehydrogenase complex, a gatekeeping enzyme, shifts energy utilization of glucose from glycolysis to oxidative phosphorylation. Thus, we hypothesized that thiamine may modulate inflammation by alleviating metabolic shifts during immune cell activation. First, using allithiamine, which showed the most potent anti-inflammatory capacity among thiamine derivatives, we confirmed the inhibitory effects of allithiamine on the lipopolysaccharide (LPS)-induced pro-inflammatory cytokine production and maturation process in dendritic cells. We applied the LPS-induced sepsis model to examine whether allithiamine has a protective role in hyper-inflammatory status. We observed that allithiamine attenuated tissue damage and organ dysfunction during endotoxemia, even when the treatment was given after the early cytokine release. We assessed the changes in glucose metabolites during LPS-induced dendritic cell activation and found that allithiamine significantly inhibited glucose-driven citrate accumulation. We then examined the clinical implication of regulating metabolites during sepsis by performing a tail bleeding assay upon allithiamine treatment, which expands its capacity to hamper the coagulation process. Finally, we confirmed that the role of allithiamine in metabolic regulation is critical in exerting anti-inflammatory action by demonstrating its inhibitory effect upon mitochondrial citrate transporter activity. In conclusion, thiamine could be used as an alternative approach for controlling the immune response in patients with sepsis.

Phosphate Solubilization and Gene Expression of Phosphate-Solubilizing Bacterium Burkholderia multivorans WS-FJ9 under Different Levels of Soluble Phosphate

  • Zeng, Qingwei;Wu, Xiaoqin;Wang, Jiangchuan;Ding, Xiaolei
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권4호
    • /
    • pp.844-855
    • /
    • 2017
  • Phosphate-solubilizing bacteria (PSB) have the ability to dissolve insoluble phosphate and enhance soil fertility. However, the growth and mineral phosphate solubilization of PSB could be affected by exogenous soluble phosphate and the mechanism has not been fully understood. In the present study, the growth and mineral phosphate-solubilizing characteristics of PSB strain Burkholderia multivorans WS-FJ9 were investigated at six levels of exogenous soluble phosphate (0, 0.5, 1, 5, 10, and 20 mM). The WS-FJ9 strain showed better growth at high levels of soluble phosphate. The phosphate-solubilizing activity of WS-FJ9 was reduced as the soluble phosphate concentration increased, as well as the production of pyruvic acid. Transcriptome profiling of WS-FJ9 at three levels of exogenous soluble phosphate (0, 5, and 20 mM) identified 446 differentially expressed genes, among which 44 genes were continuously up-regulated when soluble phosphate concentration was increased and 81 genes were continuously down-regulated. Some genes related to cell growth were continuously up-regulated, which would account for the better growth of WS-FJ9 at high levels of soluble phosphate. Genes involved in glucose metabolism, including glycerate kinase, 2-oxoglutarate dehydrogenase, and sugar ABC-type transporter, were continuously down-regulated, which indicates that metabolic channeling of glucose towards the phosphorylative pathway was negatively regulated by soluble phosphate. These findings represent an important first step in understanding the molecular mechanisms of soluble phosphate effects on the growth and mineral phosphate solubilization of PSB.

Transcriptional regulation and mutational analysis of a dctA encoding organic acid transporter protein from Pseudomonas chlororaphis O6.

  • Nam, Hyo-Song;Cho, Baik-Ho;Kim, Young-Cheol
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.100.1-100
    • /
    • 2003
  • A dctA gene encoding a protein with identity to a C4-dicarboxylate/H+ was cloned from a beneficial biocontrol bacterium, P. chororaphis O6. Expression of the dctA was induced in minimal medium by several organic acids and was repressed by glucose. Highest expression was observed in early-log cells grown on fumarate and succinate with decline as cells approached late-log phase. The dctA transcript accumulated weakly when cells were grown on malate but strong expression was observed with benzoate. Expression of the dctA transcript was repressed in early-log cells upon addition of glucose to fumarate, but was detected as the cell culture aged. A dctA-deficient mutant of O6, constructed by marker exchange mutagenesis, did not grow on minimal medium containing succinate, benzoate, or fumarate, and growth on malate was delayed. The dctA mutant and wild type grew equally on glucose. The dctA mutant on cucumber roots in sterilized potting soil was colonized at levels comparable to those of the wild type, but induction level of disease resistance by the mutant against target leaf spot disease was decreased. These results may indicate that the dctA is essential for utilization of certain organic acids and its expression is controlled by the availability of sugars. In addition, the dctA is not essenitial for cucumber root colonization, but important for induction of disease resistance.

  • PDF

초록 : 비만 실험동물쥐 (obese Zucker rats)에서의 육미지황탕의 항당뇨 효과 (Anti-diabetic effect of Yukmijihwangtang-Jahage in obese Zucker rats)

  • Kim, Cheorl-Ho;Seo, Eun-Kyung;Kang, Dong-Hwi;Seo, Jin-Woo;Kim, Kyoung-Sook;Lee, Tae-Kyun;Lee, Young-Choon;Nam, Kyung-Soo
    • 생명과학회지
    • /
    • 제10권4호
    • /
    • pp.388-396
    • /
    • 2000
  • The effect of the traditional herbal medicine Yukmijihwangtang-Jahage(YJ) on the improvement of insulin resistance and lipid profile was studied using a model for non-insulin dependent diabetes mellitus, lean (Fa/-) and obese (fa/fa) Zucker rats. Yukmijihwangtang-Jahage feeding for 4 weeks resulted in a significant decrease in the concentration of plasma triglyceride in both lean and obese Zucker rats. Furthermore, Yukmijihwangtang-Jahage markedly decreased both plasma cholesterol and fasting plasma insulin, and significantly decreased the postprandial glucose level at 30 min during oral glucose tolerance test in obese Zucker rats. Although there was no statistical significance, the crude glucose transporter 4 protein level of Yukmijihwangtang-Jahage dieted obese rats tended to increase when compared to that of obese control rats. Therefore, the present results suggested that Yukmijihwangtang-Jahage may be useful in prevention and improvement of metabolic disorders characterized by hyperinsulinemia states such as non-insulin dependent diabetes mellitus, syndrome X and coronary artery disease.

  • PDF

Insulin sensitivity improvement of fermented Korean Red Ginseng (Panax ginseng) mediated by insulin resistance hallmarks in old-aged ob/ob mice

  • Cheon, Jeong-Mu;Kim, Dae-Ik;Kim, Kil-Soo
    • Journal of Ginseng Research
    • /
    • 제39권4호
    • /
    • pp.331-337
    • /
    • 2015
  • Background: The biological actions of various ginseng extracts have been studied for treating obesity and diabetes mellitus. However, few studies have evaluated the effects of fermented Korean Red Ginseng (Panax ginseng Meyer) on metabolic syndrome. The present study evaluated the antiobesity and antidiabetic effects of fermented red ginseng (FRG) on old-aged, obese, leptin-deficient (B6.V-Lepob, "ob/ob") mice. Methods: The animals were divided into three groups and given water containing 0%, 0.5%, and 1.0% FRG for 16 wk. The effect of FRG on ob/ob mice was determined by measuring changes in body weight, levels of blood glucose, serum contents of triglycerides, total cholesterol and free fatty acids, messenger RNA (mRNA) expressions of key factors associated with insulin action, such as insulin receptor (IR), lipoprotein lipase (LPL), glucose transporter 1 and 4 (GLUT1 and GLUT4), peroxisome proliferators-activated receptor gamma ($PPAR-{\gamma}$), and phosphoenolpyruvate carboxykinase (PEPCK) in the liver and in muscle, and histology of the liver and pancreas. Results: FRG-treated mice had decreased body weight and blood glucose levels compared with control ob/ob mice. However, anti-obesity effect of FRG was not evident rather than hypoglycemic effect in old aged ob/ob mice. The hyperlipidemia in control group was attenuated in FRG-treated ob/ob mice. The mRNA expressions of IR, LPL, GLUT1, GLUT4, $PPAR-{\gamma}$, and PEPCK in the liver and in muscle were increased in the FRG-treated groups compared with the control group. Conclusion: These results suggest that FRG may play a vital role in improving insulin sensitivity relative to reducing body weight in old-aged ob/ob mice.

Maternal high-fructose intake during pregnancy and lactation induces metabolic syndrome in adult offspring

  • Koo, Soohyeon;Kim, Mina;Cho, Hyun Min;Kim, Inkyeom
    • Nutrition Research and Practice
    • /
    • 제15권2호
    • /
    • pp.160-172
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Nutritional status and food intake during pregnancy and lactation can affect fetal programming. In the current metabolic syndrome epidemic, high-fructose diets have been strongly implicated. This study investigated the effect of maternal high-fructose intake during pregnancy and lactation on the development of metabolic syndrome in adult offspring. SUBJECTS/METHODS: Drinking water with or without 20% fructose was administered to female C57BL/6J mice over the course of their pregnancy and lactation periods. After weaning, pups ate regular chow. Accu-Chek Performa was used to measure glucose levels, and a tail-cuff method was used to examine systolic blood pressure. Animals were sacrificed at 7 months, their livers were excised, and sections were stained with Oil Red O and hematoxylin and eosin (H&E) staining. Kidneys were collected for gene expression analysis using quantitative real-time Polymerase chain reaction. RESULTS: Adult offspring exposed to maternal high-fructose intake during pregnancy and lactation presented with heavier body weights, fattier livers, and broader areas under the curve in glucose tolerance test values than control offspring. Serum levels of alanine aminotransferase, aspartate aminotransferase, glucose, triglycerides, and total cholesterol and systolic blood pressure in the maternal high-fructose group were higher than that in controls. However, there were no significant differences in mRNA expressions of renin-angiotensin-aldosterone system genes and sodium transporter genes. CONCLUSIONS: These results suggest that maternal high-fructose intake during pregnancy and lactation induces metabolic syndrome with hyperglycemia, hypertension, and dyslipidemia in adult offspring.

SLC3A2 and SLC7A2 Mediate the Exogenous Putrescine-Induced Adipocyte Differentiation

  • Jin, Eom;Juhyun, Choi;Sung-Suk, Suh;Jong Bae, Seo
    • Molecules and Cells
    • /
    • 제45권12호
    • /
    • pp.963-975
    • /
    • 2022
  • Exogenous polyamines are able to induce life span and improve glucose homeostasis and insulin sensitivity. However, the effects of exogenous polyamines on adipocyte differentiation and which polyamine transporters mediate them have not been elucidated yet. Here, we identified for the first time that exogenous polyamines can clearly stimulate adipocyte differentiation through polyamine transporters, solute carrier family 3 member A2 (SLC3A2) and SLC7A1. Exogenous polyamines markedly promote 3T3-L1 adipocyte differentiation by increasing the intracellular lipid accumulation and the expression of both adipogenic and lipogenic genes in a concentration-dependent manner. In particular, exogenous putrescine mainly regulates adipocyte differentiation in the early and intermediate stages. Moreover, we have assessed the expression of polyamine transporter genes in 3T3-L1 preadipocytes and adipocytes. Interestingly, the putrescine-induced adipocyte differentiation was found to be significantly suppressed in response to a treatment with a polyamine transporter inhibitor (AMXT-1501). Furthermore, knockdown experiments using siRNA that specifically targeted SLC3A2 or SLC7A2, revealed that both SLC3A2 and SLC7A2 act as important transporters in the cellular importing of exogenous putrescine. Thus, the exogenous putrescine entering the adipocytes via cellular transporters is involved in adipogenesis through a modulation of both the mitotic clonal expansion and the expression of master transcription factors. Taken together, these results suggest that exogenous polyamines (such as putrescine) entering the adipocytes through polyamine transporters, can stimulate adipogenesis.

옥덩굴 에탄올 추출물의 당 대사 및 인슐린 민감성 개선효과 (Caulerpa okamurae ethanol extract improves the glucose metabolism and insulin sensitivity in vitro and in vivo)

  • 박철민;타쿠리랙스미센;류동영
    • Journal of Applied Biological Chemistry
    • /
    • 제64권1호
    • /
    • pp.89-96
    • /
    • 2021
  • 이 연구의 목적은 Caulerpa okamurae 에탄올 추출물(COE)이 제2형 당뇨병 치료의 약물 표적 중 하나인 당 대사 및 인슐린 민감성에 미치는 영향을 평가하는 것이다. COE는 in vitro 실험에서 단백질 티로신 포스타제 1B (PTP1B)와 디펩티딜 펩티데이즈-IV (DPP-IV) 효소 활성을 유의하게 억제시켰다. 또한, COE는 3T3-L1 지방세포와 제브라피쉬에서 당 흡수, 인슐린 수용체 기질(IRS-1) 및 당 수송체(GLUT4) 단백의 발현을 대조군에 비해 유의하게 향상시켰다. L6 근육세포의 덱사메타손(dexamethasone)으로 유도된 인슐린 저항성 모델에서도 COE는 인슐린 신호전달 및 당 흡수 단백의 발현을 효과적으로 증가시켰다. 더불어 인슐린 저항성 지표로 알려진 IRS-1 Ser307의 인산화 활성도 COE 첨가에 의해 유의하게 억제되었다. 그러나 COE는 췌장 베타세포의 인슐린 분비에는 아무런 영향을 미치지 않았다. 결론적으로 COE는 인슐린 표적세포와 제브라피쉬에서 인슐린 신호전달과 당 수송체 GLUT4 단백 발현의 조절을 통해 당 대사 및 인슐린 민감성을 개선시키는 것으로 밝혀졌다.