Browse > Article
http://dx.doi.org/10.4014/jmb.1611.11057

Phosphate Solubilization and Gene Expression of Phosphate-Solubilizing Bacterium Burkholderia multivorans WS-FJ9 under Different Levels of Soluble Phosphate  

Zeng, Qingwei (Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University)
Wu, Xiaoqin (Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University)
Wang, Jiangchuan (Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University)
Ding, Xiaolei (Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.4, 2017 , pp. 844-855 More about this Journal
Abstract
Phosphate-solubilizing bacteria (PSB) have the ability to dissolve insoluble phosphate and enhance soil fertility. However, the growth and mineral phosphate solubilization of PSB could be affected by exogenous soluble phosphate and the mechanism has not been fully understood. In the present study, the growth and mineral phosphate-solubilizing characteristics of PSB strain Burkholderia multivorans WS-FJ9 were investigated at six levels of exogenous soluble phosphate (0, 0.5, 1, 5, 10, and 20 mM). The WS-FJ9 strain showed better growth at high levels of soluble phosphate. The phosphate-solubilizing activity of WS-FJ9 was reduced as the soluble phosphate concentration increased, as well as the production of pyruvic acid. Transcriptome profiling of WS-FJ9 at three levels of exogenous soluble phosphate (0, 5, and 20 mM) identified 446 differentially expressed genes, among which 44 genes were continuously up-regulated when soluble phosphate concentration was increased and 81 genes were continuously down-regulated. Some genes related to cell growth were continuously up-regulated, which would account for the better growth of WS-FJ9 at high levels of soluble phosphate. Genes involved in glucose metabolism, including glycerate kinase, 2-oxoglutarate dehydrogenase, and sugar ABC-type transporter, were continuously down-regulated, which indicates that metabolic channeling of glucose towards the phosphorylative pathway was negatively regulated by soluble phosphate. These findings represent an important first step in understanding the molecular mechanisms of soluble phosphate effects on the growth and mineral phosphate solubilization of PSB.
Keywords
Transcriptome analysis; mineral phosphate solubilization; Burkholderia multivorans; soluble phosphate; glucose phosphorylative pathway;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Farhat MB, Fourati A, Chouayekh H. 2013. Coexpression of the pyrroloquinoline quinone and glucose dehydrogenase genes from Serratia marcescens CTM 50650 conferred high mineral phosphate-solubilizing ability to Escherichia coli. Appl. Biochem. Biotechnol. 170: 1738-1750.   DOI
2 Liu S-T, Lee L, Tai C-Y, Hung C, Chang Y, Wolfram JH, et al. 1992. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. J. Bacteriol. 174: 5814-5819.   DOI
3 Reher M, Bott M, Schonheit P. 2006. Characterization of glycerate kinase (2-phosphoglycerate forming), a key enzyme of the nonphosphorylative Entner-Doudoroff pathway, from the thermoacidophilic euryarchaeon Picrophilus torridus. FEMS Microbiol. Lett. 259: 113-119.   DOI
4 Tretter L, Adam-Vizi V. 2005. Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Phil. Trans. R. Soc. B Biol. Sci. 360: 2335-2345.   DOI
5 Conway T. 1992. The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol. Rev. 103: 1-28.   DOI
6 Basu A, Phale PS. 2006. Inducible uptake and metabolism of glucose by the phosphorylative pathway in Pseudomonas putida CSV86. FEMS Microbiol. Lett. 259: 311-316.   DOI
7 Elferink MG, Albers SV, Konings WN, Driessen AJ. 2001. Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters. Mol. Microbiol. 39: 1494-1503.   DOI
8 Albers S-V, Elferink MG, Charlebois RL, Sensen CW, Driessen AJ, Konings WN. 1999. Glucose transport in the extremely thermoacidophilic Sulfolobus solfataricus involves a high-affinity membrane-integrated binding protein. J. Bacteriol. 181: 4285-4291.
9 Antelmann H, Scharf C, Hecker M. 2000. Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis. J. Bacteriol. 182: 4478-4490.   DOI
10 Lamarche MG, Wanner BL, Crepin S, Harel J. 2008. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 32: 461-473.   DOI
11 Hsieh Y-J, Wanner BL. 2010. Global regulation by the seven-component Pi signaling system. Curr. Opin. Microbiol. 13: 198-203.   DOI
12 Hulett F, Lee J, Shi L, Sun G, Chesnut R, Sharkova E, et al. 1994. Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis. J. Bacteriol. 176: 1348-1358.   DOI
13 Eder S, Shi L, Jensen K, Yamane K, Hulett FM. 1996. A Bacillus subtilis secreted phosphodiesterase/alkaline phosphatase is the product of a Pho regulon gene, phoD. Microbiology 142: 2041-2047.   DOI
14 Maddocks SE, Oyston PC. 2008. Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154: 3609-3623.   DOI
15 Thomas L, Hodgson DA, Wentzel A, Nieselt K, Ellingsen TE, Moore J, et al. 2012. Metabolic switches and adaptations deduced from the proteomes of Streptomyces coelicolor wild type and phoP mutant grown in batch culture. Mol. Cell. Proteomics 11: M111.013797.   DOI
16 Heller KJ, Kadner RJ, Gunther K. 1988. Suppression of the btuB451 mutation by mutations in the tonB gene suggests a direct interaction between TonB and TonB-dependent receptor proteins in the outer membrane of Escherichia coli. Gene 64: 147-153.   DOI
17 Braun V, Mahren S, Ogierman M. 2003. Regulation of the FecI-type ECF sigma factor by transmembrane signalling. Curr. Opin. Microbiol. 6: 173-180.   DOI
18 Batjes NH. 1997. A world dataset of derived soil properties by FAO-UNESCO soil unit for global modelling. Soil Use Manage. 13: 9-16.   DOI
19 Rodríguez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339.   DOI
20 Khan MS, Zaidi A, Wani PA. 2007. Role of phosphate-solubilizing microorganisms in sustainable agriculture - a review. Agron. Sustain. Dev. 27: 29-43.   DOI
21 Buch A, Archana G, Naresh Kumar G. 2008. Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency. Res. Microbiol. 159: 635-642.   DOI
22 Mander C, Wakelin S, Young S, Condron L, O'Callaghan M. 2012. Incidence and diversity of phosphate-solubilising bacteria are linked to phosphorus status in grassland soils. Soil Biol. Biochem. 44: 93-101.   DOI
23 Goldstein AH, Liu ST. 1987. Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Nat. Biotechnol. 5: 72-74.   DOI
24 Mikanova O, Novakova J. 2002. Evaluation of the P-solubilizing activity of soil microorganisms and its sensitivity to soluble phosphate. Rostlinna Vyroba 48: 397-400.
25 Chen Y, Rekha P, Arun A, Shen F, Lai W-A, Young C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34: 33-41.   DOI
26 Patel DK, Archana G, Kumar GN. 2008. Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. Curr. Microbiol. 56: 168-174.   DOI
27 Oubrie A, Rozeboom HJ, Kalk KH, Olsthoorn AJ, Duine JA, Dijkstra BW. 1999. Structure and mechanism of soluble quinoprotein glucose dehydrogenase. EMBO J. 18: 5187-5194.   DOI
28 Ishige T, Krause M, Bott M, Wendisch VF, Sahm H. 2003. The phosphate starvation stimulon of Corynebacterium glutamicum d etermined by DNA m icroarray analy ses. J. Bacteriol. 185: 4519-4529.   DOI
29 Zeng Q, Wu X, Wen X. 2016. Effects of soluble phosphate on phosphate-solubilizing characteristics and expression of gcd gene in Pseudomonas frederiksbergensis JW-SD2. Curr. Microbiol. 72: 198-206.   DOI
30 Gyaneshwar P, Parekh L, Archana G, Poole P, Collins M, Hutson R, Kumar GN. 1999. Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiol. Lett. 171: 223-229.   DOI
31 Pragai Z, Allenby NE, O'Connor N, Dubrac S, Rapoport G, Msadek T, Harwood CR. 2004. Transcriptional regulation of the phoPR operon in Bacillus subtilis. J. Bacteriol. 186: 1182-1190.   DOI
32 Mahenthiralingam E, Bischof J, Byrne SK, Radomski C, Davies JE, Av-Gay Y, Vandamme P. 2000. DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J. Clin. Microbiol. 38: 3165-3173.
33 LiPuma JJ, Spilker T, Gill LH, Campbell III PW, Liu L, Mahenthiralingam E. 2001. Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am. J. Respir. Crit. Care Med. 164: 92-96.   DOI
34 Ames BN. 1966. Assay of inorganic phosphate, total phosphate and phosphatase. Methods Enzymol. 8: 115-118.
35 Nishiy ama E, Ohtsubo Y , Nagata Y , Tsuda M. 2010. Identification of Burkholderia multivorans ATCC 17616 genes induced in soil environment by in vivo expression technology. Environ. Microbiol. 12: 2539-2558.
36 Lessie T, Phibbs Jr P. 1984. Alternative pathways of carbohydrate utilization in pseudomonads. Annu. Rev. Microbiol. 38: 359-388.   DOI
37 Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM. 2007. Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl. Environ. Microbiol. 73: 7259-7267.   DOI
38 Hou L. 2012. Studies on screening of efficient phosphate-solubilizing bacteria in the rhizosphere of pine trees and on their characteristics. Master Thesis, Nanjing Forestry University, Nanjing, China.
39 Li G-X, Wu X-Q, Ye J-R. 2013. Biosafety and colonization of Burkholderia multivorans WS-FJ9 and its growth-promoting effects on poplars. Appl. Microbiol. Biotechnol. 97: 10489-10498.   DOI
40 Kang S, Denman SE, Morrison M, Yu Z, McSweeney CS. 2009. An efficient RNA extraction method for estimating gut microbial diversity by polymerase chain reaction. Curr. Microbiol. 58: 464-471.   DOI
41 Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29: 644-652.   DOI
42 Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674-3676.   DOI
43 Lukowitz W, Nickle TC, Meinke DW, Last RL, Conklin PL, Somerville CR. 2001. Arabidopsis cyt1 mutants are deficient in a mannose-1-phosphate guanylyltransferase and point to a requirement of N-linked glycosylation for cellulose biosynthesis. Proc. Natl. Acad. Sci. USA 98: 2262-2267.   DOI
44 Kanehisa M, Goto S. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28: 27-30.   DOI
45 Vermis K, Brachkova M, Vandamme P, Nelis H. 2003. Isolation of Burkholderia cepacia complex genomovars from waters. Syst. Appl. Microbiol. 26: 595-600.   DOI
46 Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621-628.   DOI
47 Audic S, Claverie J-M. 1997. The significance of digital gene expression profiles. Genome Res. 7: 986-995.   DOI
48 Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2-{\Delta}{\Delta}CT$ method. Methods 25: 402-408.   DOI
49 Lam H, Oh D-C, Cava F, Takacs CN, Clardy J, de Pedro MA, Waldor MK. 2009. D-Amino acids govern stationary phase cell wall remodeling in bacteria. Science 325: 1552-1555.   DOI
50 Olsiewski PJ, Kaczorowski G, Walsh C. 1980. Purification and properties of D-amino acid dehydrogenase, an inducible membrane-bound iron-sulfur flavoenzyme from Escherichia coli B. J. Biol. Chem. 255: 4487-4494.
51 Justice SS, Hunstad DA, Harper JR, Duguay AR, Pinkner JS, Bann J, et al. 2005. Periplasmic peptidyl prolyl cis-trans isomerases are not essential for viability, but SurA is required for pilus biogenesis in Escherichia coli. J. Bacteriol. 187: 7680-7686.   DOI
52 Berka TR, Allenza P, Lessie TG. 1984. Hyperinduction of enzymes of the phosphorylative pathway of glucose dissimilation in Pseudomonas cepacia. Curr. Microbiol. 11: 143-148.   DOI
53 Kuhad RC, Singh S, Singh A. 2011. Phosphate-solubilizing microorganisms, pp. 65-84. In Singh A, Parmar N, Kuhad RC (eds.). Bioaugmentation, Biostimulation and Biocontrol, 1st Ed. Springer-Verlag, Berlin-Heidelberg. Germany.