• Title/Summary/Keyword: global-finite element

Search Result 494, Processing Time 0.023 seconds

Buckling Behaviors of Single-Layered Lattice Dome under Radial Uniform Loads (등분포 중심축 하중을 받는 단층래티스돔의 좌굴거동)

  • Kim, Choong-Man;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • This paper presented the nonlinear behaviors of the single-layered lattice dome, which is widely used for the long-span structure system. The behaviors were analysed through the classical shell buckling theory as the single-layered lattice dome behaves like continum thin shell due to its geometric characteristics, and finite element analysis method using the software program Nastran. Shell buckling theory provides two types of buckling loads, the global- and member buckling, and finite element analysis provides the ultimate load of geometric nonlinear analysis as well as the buckling load of Eigen value solution. Two types of models for the lattice dome were analysed, that is rigid- and pin-jointed structure. Buckling load using the shell buckling theory for each type of lattice dome, governed by the minimum value of global buckling or member buckling load, resulted better estimation than the buckling load with Eigen value analysis. And it is useful to predict the buckling pattern, that is global buckling or member buckling.

Application of the Preconditioned Conjugate Gradient Method to the Generalized Finite Element Method with Global-Local Enrichment Functions (전처리된 켤레구배법의 전체-국부 확장함수를 지닌 일반유한요소해석에의 응용)

  • Choi, Won-Jeong;Kim, Min-Sook;Kim, Dae-Jin;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.405-412
    • /
    • 2011
  • This paper introduces the generalized finite element method with global-local enrichment functions using the preconditioned conjugate gradient method. The proposed methodology is able to generate enrichment functions for problems where limited a-priori knowledge on the solution is available and to utilize a preconditioner and initial guess of good quality with only small addition of computational cost. Thus, it is very effective to analyze problems where a complex behavior is locally exhibited. Several numerical experiments are performed to confirm its effectiveness and show that it is computationally more efficient than the analysis utilizing direct solvers such as Gauss elimination method.

Efficient Global Optimization of Periodic Plasmonic Nanoslit Array Based on Quality Factor Analysis

  • Jaehoon Jung
    • Current Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.248-253
    • /
    • 2023
  • An efficient global optimization approach for a periodic plasmonic nanoslit array based on extraordinary optical transmission within an acceptable time range is proposed using 𝚀 factor analysis method. The particle swarm optimization is employed as a global optimization tool. The figure of merit is defined as a product of transmission peak value and 𝚀 factor. The design variables are the slit width, height, and period of the slit array, respectively. The optical properties such as transmission spectrum and bandwidth are calculated rigorously using the finite element method.

Use of homogenization theory to build a beam element with thermo-mechanical microscale properties

  • Schrefler, B.A.;Lefik, M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.613-630
    • /
    • 1996
  • The homogenization method is used to develop a beam element in space for thermo-mechanical analysis of unidirectional composites. Local stress and temperature field in the microscale are described using the function of homogenization. The global (macroscopic) behaviour of the structure is supposed to be that of a beam. Beam-type kinematical hypotheses (including independent shear rotations) are hence applied and superposed on the microdescription. A macroscopic stiffness matrix for such a beam element is then developed which contains the microscale properties of the single cell of periodicity. The presented model enables us to analyse without too much computational effort complicated composite structures such as e.g. toroidal coils of a fusion reactor. We need only a FE mesh sufficiently fine for a correct description of the local geometry of a single cell and a few of the newly developed elements for the description of the global behaviour. An unsmearing procedure gives the stress and temperature field in the different materials of a single cell.

An Incompressible Flow Computation using a Multi-level Substructuring Method (다단계 부분 구조법에 의한 비 압축성 유동 계산)

  • Kim J. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.83-90
    • /
    • 2004
  • Substructuring methods are usually used in finite element structural analyses. In this study a multi-level substructuring algorithm is developed and proposed as a possible candidate for incompressible fluid solves. Finite element formulation for incompressible flow has been stabilized by a modified residual procedure proposed by Ilinca et.al.[5]. The present algorithm consists of four stages such as a gathering stage, a condensing stage, a solving stage and a scattering stage. At each level, a predetermined number of elements are gathered and condensed to form an element of higher level. At highest level, each subdomain consists of only one super-element. Thus, the inversion process of a stiffness matrix associated with internal degrees of freedom of each subdomain has been replaced by a sequential static condensation. The global algebraic system arising feom the assembly of each subdomains is solved using Conjugate Gradient Squared(CGS) method. In this case, pre-conditioning techniques usually accompanied by iterative solvers are not needed.

  • PDF

Vibraiton and Power Flow Analysis for the Branched Piping System by Wave Approach (파동접근법을 이용한 분기된 배관계의 진동 및 파워흐름해석)

  • Koo, Gyeong-Hoe;Park, Yun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1225-1232
    • /
    • 1996
  • In this paper the vibration and power flow analysis for the branched piping system conveying fluid are performed by wave approach. The uniform straight pipe element conveying fluid is formulated using the dynamic stiffness matrix by wave approach. The branched piping system conveying fluid can be easily formulated with considering of simple assumptions of displacements at the junction and continuity conditions of the pipe internal flow. The dynamic stiffness matrix for each uniform straight pipe element can be assembled by using the global assembly technique using in conventional finite element method. The computational method proposed in this paper can easily calculate the forced responses and power flow of the branched piping system conveying fluid regardless of finite element size and modal properties.

Study of Tube Expansion to Produce Hair-Pin Type Heat Exchanger Tubes using the Finite Element Method (유한요소법을 이용한 헤어핀 형 열 교환기의 튜브 확관에 대한 연구)

  • Hong, S.;Hyun, H.;Hwang, J.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.164-170
    • /
    • 2014
  • To predict the deformation and fracture during tube expansion using the finite element (FE) method, a material model is considered that incorporates the damage evolution due to the deformation. In the current study, a Rice-Tracey model was used as the damage model with inclusion of the hydrostatic stress term. Since OFHC Cu is not significantly affected by strain rate, a Hollomon flow stress model was used. The material parameters in each model were obtained by using an optimization method. The objective function was defined as the difference between the experimental measurements and FE simulation results. The parameters were determined by minimizing the objective function. To verify the validity of the FE modeling, cross-verification was conducted through a tube expansion test. The simulation results show reasonable agreement with the experiments. The design for a minimum diameter of expansion tube using the FE modeling was verified by a simplified tube expansion test and simulation results.

A multi-resolution analysis based finite element model updating method for damage identification

  • Zhang, Xin;Gao, Danying;Liu, Yang;Du, Xiuli
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.47-65
    • /
    • 2015
  • A novel finite element (FE) model updating method based on multi-resolution analysis (MRA) is proposed. The true stiffness of the FE model is considered as the superposition of two pieces of stiffness information of different resolutions: the pre-defined stiffness information and updating stiffness information. While the resolution of former is solely decided by the meshing density of the FE model, the resolution of latter is decided by the limited information obtained from the experiment. The latter resolution is considerably lower than the former. Second generation wavelet is adopted to describe the updating stiffness information in the framework of MRA. This updating stiffness in MRA is realized at low level of resolution, therefore, needs less number of updating parameters. The efficiency of the optimization process is thus enhanced. The proposed method is suitable for the identification of multiple irregular cracks and performs well in capturing the global features of the structural damage. After the global features are identified, a refinement process proposed in the paper can be carried out to improve the performance of the MRA of the updating information. The effectiveness of the method is verified by numerical simulations of a box girder and the experiment of a three-span continues pre-stressed concrete bridge. It is shown that the proposed method corresponds well to the global features of the structural damage and is stable against the perturbation of modal parameters and small variations of the damage.

Experimental and numerical analysis of the global behaviour of the 1:9 scale model of the Old Bridge in Mostar

  • Kustura, Mladen;Smoljanovic, Hrvoje;Nikolic, Zeljana;Krstevska, Lidija
    • Coupled systems mechanics
    • /
    • v.10 no.1
    • /
    • pp.1-19
    • /
    • 2021
  • Composite nature of the masonry structures in general causes complex and non-linear behaviour, especially in intense vibration conditions. The presence of different types and forms of structural elements and different materials is a major problem for the analysis of these type of structures. For this reason, the analysis of the behaviour of masonry structures requires a combination of experimental tests and non-linear mathematical modelling. The famous UNESCO Heritage Old Bridge in Mostar was selected as an example for the analysis of the global behaviour of reinforced stone arch masonry bridges. As part of the experimental research, a model of the Old Bridge was constructed in a scale of 1:9 and tested on a shaking table platform for different levels of seismic excitation. Non-linear mathematical modelling was performed using a combined finite-discrete element method (FDEM), including the effect of connection elements. The paper presents the horizontal displacement of the top of the arch and the failure mechanism of the Old Bridge model for the experimental and the numerical phase, as well as the comparison of the results. This research provided a clearer insight into the global behaviour of stone arch masonry structures reinforced with steel clamps and steel dowels, which is significant for the structures classified as world cultural heritage.

Equivalent Mechanical and Thermal Properties of Multiphase Superconducting Coil Using Finite Element Analysis (유한요소해석을 이용한 다상의 초전도 코일에 대한 기계적 열적 등가 물성)

  • Sa, J.W.;Her, N.I.;Choi, C.H.;Oh, Y.K.;Cho, S.;Do, C.J.;Kwon, M.;Lee, G.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.975-980
    • /
    • 2001
  • Like composite material. the coil winding pack of the KSTAR (Korea Superconducting Tokamak Advanced Research) consist of multiphase element such as metallic jacket material for protecting superconducting cable, vacuum pressurized imprepregnated (VPI) insulation, and corner roving filler. For jacket material, four CS (Central Solenoid) Coils, $5^{th}$ PF (Poloidal Field) Coil, and TF (Toroidal Field Coil) use Incoloy 908 and $6-7^{th}$ PF coil, Cold worked 316LN. In order to analyze the global behavior of large coil support structure with coil winding pack, it is required to replace the winding pack to monolithic matter with the equivalent mechanical properties, i.e. Young's moduli, shear moduli due to constraint of total nodes number and element numbers. In this study, Equivalent Young's moduli, shear moduli, Poisson's ratio, and thermal expansion coefficient were calculated for all coil winding pack using Finite Element Method.

  • PDF