• Title/Summary/Keyword: global solutions

Search Result 796, Processing Time 0.023 seconds

GLOBAL GRADIENT ESTIMATES FOR NONLINEAR ELLIPTIC EQUATIONS

  • Ryu, Seungjin
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1209-1220
    • /
    • 2014
  • We prove global gradient estimates in weighted Orlicz spaces for weak solutions of nonlinear elliptic equations in divergence form over a bounded non-smooth domain as a generalization of Calder$\acute{o}$n-Zygmund theory. For each point and each small scale, the main assumptions are that nonlinearity is assumed to have a uniformly small mean oscillation and that the boundary of the domain is sufficiently flat.

GLOBAL EXISTENCE FOR VOLTERRA-FREDHOLM TYPE FUNCTIONAL IMPULSIVE INTEGRODIFFERENTIAL EQUATIONS

  • Vijayakumar, V.;Prakash, K. Alagiri;Murugesu, R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.17-28
    • /
    • 2013
  • In this paper, we study the global existence of solutions for the initial value problems for Volterra-Fredholm type functional impulsive integrodifferential equations. Using the Leray-Schauder Alternative, we derive conditions under which a solution exists globally.

GLOBAL ATTRACTOR FOR A SEMILINEAR STRONGLY DEGENERATE PARABOLIC EQUATION WITH EXPONENTIAL NONLINEARITY IN UNBOUNDED DOMAINS

  • Tu, Nguyen Xuan
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.423-443
    • /
    • 2022
  • We study the existence and long-time behavior of weak solutions to a class of strongly degenerate semilinear parabolic equations with exponential nonlinearities on ℝN. To overcome some significant difficulty caused by the lack of compactness of the embeddings, the existence of a global attractor is proved by combining the tail estimates method and the asymptotic a priori estimate method.

GLOBAL NONEXISTENCE FOR THE WAVE EQUATION WITH BOUNDARY VARIABLE EXPONENT NONLINEARITIES

  • Ha, Tae Gab;Park, Sun-Hye
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.205-216
    • /
    • 2022
  • This paper deals with a nonlinear wave equation with boundary damping and source terms of variable exponent nonlinearities. This work is devoted to prove a global nonexistence of solutions for a nonlinear wave equation with nonnegative initial energy as well as negative initial energy.

EXISTENCE AND DECAY PROPERTIES OF WEAK SOLUTIONS TO THE INHOMOGENEOUS HALL-MAGNETOHYDRODYNAMIC EQUATIONS

  • HAN, PIGONG;LEI, KEKE;LIU, CHENGGANG;WANG, XUEWEN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.76-107
    • /
    • 2022
  • In this paper, we study the temporal decay of global weak solutions to the inhomogeneous Hall-magnetohydrodynamic (Hall-MHD) equations. First, an approximation problem and its weak solutions are obtained via the Caffarelli-Kohn-Nirenberg retarded mollification technique. Then, we prove that the approximate solutions satisfy uniform decay estimates. Finally, using the weak convergence method, we construct weak solutions with optimal decay rates to the inhomogeneous Hall-MHD equations.

Fracture Behavior Estimation for Circumferential Surface Cracked Pipes (I) - J-Integral Estimation Solution - (배관에 존재하는 원주방향 표면균열에 대한 파괴거동 해석 (I) -J-적분 예측식 -)

  • Kim, Jin-Su;Kim, Yun-Jae;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.131-138
    • /
    • 2002
  • This paper provides the fully plastic J solutions for circumferential cracked pipes with inner, semi- elliptical surface cracks, subject to internal pressure and global bending. Solutions are given in the form of two different approaches, the GEF/EPRl approach and the reference stress approach. For the GE/EPRl approach, the plastic influence functions for fully plastic J are tabulated based on extensive 3-D FE calculations using the Ramberg-Osgood (R-O) materials, covering a wide range of pipe and crack geometries. The developed GEf/EPRl-type fully plastic J estimation equations are then re-formulated using the concept of the reference stress approach for wider applications. Based on the FE results, optimized reference load solutions for the definition of the reference stress are found for internal pressure and for global bending. Advantages of the reference stress based approach over the GE/EPRl-type approach are fully discussed. Validation of the proposed reference stress based J estimation equations will be given in Part II, based on 3-D elastic-plastic or elastic creep FE results using typical tensile properties of stainless steels and generalized creep- deformation behaviours.

DYNAMICS OF A CLASS OF NON-AUTONOMOUS SYSTEMS OF TWO NON-INTERACTING PREYS WITH COMMON PREDATOR

  • ELABBASY E. M.;SAKER S. H.
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.195-215
    • /
    • 2005
  • In this paper, we investigate the dynamics of the mathematical model of two non-interacting preys in presence of their common natural enemy (predator) based on the non-autonomous differential equations. We establish sufficient conditions for the permanence, extinction and global stability in the general non-autonomous case. In the periodic case, by means of the continuation theorem in coincidence degree theory, we establish a set of sufficient conditions for the existence of a positive periodic solutions with strictly positive components. Also, we give some sufficient conditions for the global asymptotic stability of the positive periodic solution.

Optimum Design for Rotor-bearing System Using Advanced Genetic Algorithm (향상된 유전알고리듬을 이용한 로터 베어링 시스템의 최적설계)

  • Kim, Young-Chan;Choi, Seong-Pil;Yang, Bo-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.533-538
    • /
    • 2001
  • This paper describes a combinational method to compute the global and local solutions of optimization problems. The present hybrid algorithm uses both a genetic algorithm and a local concentrate search algorithm (e. g simplex method). The hybrid algorithm is not only faster than the standard genetic algorithm but also supplies a more accurate solution. In addition, this algorithm can find the global and local optimum solutions. The present algorithm can be supplied to minimize the resonance response (Q factor) and to yield the critical speeds as far from the operating speed as possible. These factors play very important roles in designing a rotor-bearing system under the dynamic behavior constraint. In the present work, the shaft diameter, the bearing length, and clearance are used as the design variables.

  • PDF

Optimal Design of a Squeeze Film Damper Using an Enhanced Genetic Algorithm

  • Ahn, Young-Kong;Kim, Young-Chan;Yang, Bo-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1938-1948
    • /
    • 2003
  • This paper represents that an enhanced genetic algorithm (EGA) is applied to optimal design of a squeeze film damper (SFD) to minimize the maximum transmitted load between the bearing and foundation in the operational speed range. A general genetic algorithm (GA) is well known as a useful global optimization technique for complex and nonlinear optimization problems. The EGA consists of the GA to optimize multi-modal functions and the simplex method to search intensively the candidate solutions by the GA for optimal solutions. The performance of the EGA with a benchmark function is compared to them by the IGA (Immune-Genetic Algorithm) and SQP (Sequential Quadratic Programming). The radius, length and radial clearance of the SFD are defined as the design parameters. The objective function is the minimization of a maximum transmitted load of a flexible rotor system with the nonlinear SFDs in the operating speed range. The effectiveness of the EGA for the optimal design of the SFD is discussed from a numerical example.

Trust-Tech based Parameter Estimation and its Application to Power System Load Modeling

  • Choi, Byoung-Kon;Chiang, Hsiao-Dong;Yu, David C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.451-459
    • /
    • 2008
  • Accurate load modeling is essential for power system static and dynamic analysis. By the nature of the problem of parameter estimation for power system load modeling using actual measurements, multiple local optimal solutions may exist and local methods can be trapped in a local optimal solution giving possibly poor performance. In this paper, Trust-Tech, a novel methodology for global optimization, is applied to tackle the multiple local optimal solutions issue in measurement-based power system load modeling. Multiple sets of parameter values of a composite load model are obtained using Trust-Tech in a deterministic manner. Numerical studies indicate that Trust-Tech along with conventional local methods can be successfully applied to power system load model parameter estimation in measurement-based approaches.