• Title/Summary/Keyword: global positioning system (GPS) measurement

Search Result 171, Processing Time 0.022 seconds

GPS Output Signal Processing considering both Correlated/White Measurement Noise for Optimal Navigation Filtering

  • Kim, Do-Myung;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.499-506
    • /
    • 2012
  • In this paper, a dynamic modeling for the velocity and position information of a single frequency stand-alone GPS(Global Positioning System) receiver is described. In static condition, the position error dynamic model is identified as a first/second order transfer function, and the velocity error model is identified as a band-limited Gaussian white noise via non-parametric method of a PSD(Power Spectrum Density) estimation in continuous time domain. A Kalman filter is proposed considering both correlated/white measurements noise based on identified GPS error model. The performance of the proposed Kalman filtering method is verified via numerical simulation.

WMPS: A Positioning System for Localizing Legacy 802.11 Devices

  • Gallo, Pierluigi;Garlisi, Domenico;Giuliano, Fabrizio;Gringoli, Francesco;Tinnirello, Ilenia
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.2
    • /
    • pp.106-116
    • /
    • 2012
  • The huge success of location-aware applications has called for the rapid development of an alternative positioning system to the global positioning system (GPS) for indoor localization based on existing technologies, such as 802.11 wireless networks. This paper proposes the Wireless MAC Processor Positioning System (WMPS), which is a localization system running on off-the-shelf 802.11 Access Points and based on the time-of-flight ranging of users' standard terminals. This paper proves through extensive experiments that the propagation delays can be measured with the accuracy required by indoor applications despite the different noise components that can affect the result: latencies of the hardware transreceivers, multipath, ACK jitters and timer quantization. Key to this solution is the choice of the Wireless MAC Processor architecture, which enables a straightforward implementation of the ranging subsystem directly inside the commercial cards without affecting the basic DCF channel access algorithm. In addition to the proposed measurement framework, this study developed a simple and effective localization algorithm that can work without requiring any preliminary calibration or device characterization. Finally, the architecture allows the measurement methodology to be adjusted as a function of the network load or propagation environments at the run time, without requiring any firmware update.

  • PDF

Position Information Acquisition Method Based on LED Lights and Smart Device Camera Using 3-Axis Moving Distance Measurement (3축 이동량 측정을 이용한 LED조명과 스마트단말 카메라기반 위치정보 획득 기법)

  • Jung, Soon-Ho;Lee, Min-Woo;Kim, Ki-Yun;Cha, Jae-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.226-232
    • /
    • 2015
  • As the age of smart device has come, recently many application services related to smart phone are developing. The LBS(Location Based Service) technique is considered as one of the most important techniques to support location based application services. Usually the smart phone acquires the information of position by using the position recognition systems and sensors such as GPS(Global Positioning System) and G-Sensor. However, since the GPS signal from the satellite can hardly be received in the indoor environments, new LBS techniques for the indoor environment are required. In this paper, to solve the problem a position information transceiver using LED lights and smart phone camera sensor is proposed. We proved the possibility of the proposed positioning system through the experiments in the laboratory for the practical verification.

The Study of the Position Estimation for an Autonomous Land Vehicle

  • Lim, Ho;Park, Chong-Kug
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.239-246
    • /
    • 2004
  • In this paper, we develop and implement a high integrity GNC(Guidance, Navigation, and Control) system, based on the combined use of the Global Positioning System (GPS) and an Inertial Measurement Unit (IMU), for autonomous land vehicle applications. This paper highlights guidance for the predetermined trajectory and navigation with detection of possible faults during the fusion process in order to enhance the integrity of the navigation loop. The implementation of the GNC system to the autonomous land vehicle presented with fault detection methodology considers high frequency faults from the GPS receiver caused by shadowing and multipath error The implementation, based on a low-cost, strapdown INS aided by standard GPS technology, is described. The results of the field test in the urban environment are presented and showed effectiveness of the GNC system.

An Effective Real-Time Integer Ambiguity Resolution Method Using GPS Dual Frequency (GPS 이중주파수 측정치를 이용한 효율적인 실시간 미지정수 결정방법)

  • Son, Seok-Bo;Park, Chansik;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.719-726
    • /
    • 2000
  • A real-time precise positioning is possible with GPS carrier phase measurements with efficient integer ambiguity resolution techniques. It is known that more reliable and fast integer ambiguity resolution is possi-ble as the number of measurements increases. Most precise positioning systems use dual frequency measurements and the wide-lnae technique to resolve integer ambiguity. The wide-lane technique magnifies the measurement noise while it reduces the number of candidates to be examined. In this paper a new integer ambiguity resolution method using dual frequency is proposed The proposed method utilizes the relationship between the wide-lane single frequency and the narrow-lane ambiguities to resolve narrow-lane integer ambiguity after fixing the wide-lane integer ambiguity. Experiments with real data show that the proposed method gives fast and reliable results.

  • PDF

Vision-Based Dynamic Motion Measurement of a Floating Structure Using Multiple Targets under Wave Loadings (다중 표적을 이용한 부유식 구조물의 영상 기반 동적 응답 계측)

  • Yi, Jin-Hak;Kim, Jin-Ha;Jeong, Weon-Mu;Chae, Jang-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.19-30
    • /
    • 2012
  • Recently, vision-based dynamic deflection measurement techniques have significant interests and are getting more popular owing to development of the high-quality and low-price camcorder and also image processing algorithm. However, there are still several research issues to be improved including the self-vibration of vision device, i.e. camcorder, and the image processing algorithm in device aspect, and also the application area should be extended to measure three dimensional movement of floating structures in application aspect. In this study, vision-based dynamic motion measurement technique using multiple targets is proposed to measure three dimensional dynamic motion of floating structures. And also a new scheme to select threshold value to discriminate the background from the raw image containing targets. The proposed method is applied to measure the dynamic motion of large concrete floating quay in open sea area under several wave conditions, and the results are compared with the measurement results from conventional RTK-GPS(Real Time Kinematics-Global Positioning System) and MRU(Motion Reference Unit).

Short Distance ASF Measurement by using 9930M Loran Signal (9930M Loran신호 이용 근거리 ASF 측정)

  • Yang, Sung-Hoon;Lee, Chang-Bok;Lee, Jong-Gu;Kim, Young-Jae;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.370-371
    • /
    • 2010
  • The Long Range Navigation (LORAN) had been mainly used world-wide until GPS (Global Positioning System) activation. In particular. it was essential junctionality for the ships to sail the oceans. However, according to the industry's developing, the current accuracy of Loran is insufficient for the utilization such as the harbour approach, the land navigation and the field of precise timing. Therefore it is necessary the study on the improvement of the positioning accuracy of Loran. The method of its improvement is to measure and compensate the propagation time delay, that is, additional secondary factor (ASF) between the transmitter and user's receiver. This study shows the technique for the absolute time delay measurement without a time of coincidence (TOC) table, and represents the ASF measurement result between Pohang transmitter station(9930M) and each measure points.

  • PDF

Comparison of Positioning Accuracy Using the Pseudorange from Android GPS Raw Measurements (안드로이드 GPS 원시데이터의 의사거리를 이용한 측위 정확도 비교)

  • Gim, Joonseong;Park, Kwan-dong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.514-519
    • /
    • 2017
  • In this paper, the pseudorange-based GPS performance using the Android's raw measurements is compared with NMEA. In order to compare the performance between the two different implementations, we used Nexus 9 tablets and collected the raw measurements and NMEA data using the GNSS logger application provided by Google. To verify the performance of the final coordinates calculated, the VRS was used as the reference coordinate and compared with the NMEA results. The resulting horizontal, vertical, and 3D RMS errors of the pseudorange-based GPS using the Android's raw measurements are 3.05, 3.82, and 4.97 m, respectively, which correspond to 32% horizontal, 65% vertical and 49% 3D performance improvement compared with NMEA.

Development of MF R-Mode Transmitting System for Maritime Resilient PNT in the Republic of Korea

  • Han, Younghoon;Son, Pyo-Woong;Seo, Kiyeol;Fang, Tae Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.239-244
    • /
    • 2022
  • R-Mode is terrestrial based Global Navigation Satellite System (GNSS) backup radio navigation technology which used existing maritime information service infrastructure. It has advantages on reduce the cost and reutilize the frequency resource. In this paper, we propose a method to develop a medium-frequency (MF) band R-Mode transmitting station by utilizing the currently operating Differential GNSS (DGNSS) reference station infrastructure. To this end, the considerations for co-operating the DGNSS reference station and the MF R-Mode transmitting station are analyzed. In this process, we also analyze what is necessary to configure the communication system as a navigation system for range measurement. Based on the analysis result, MF R-Mode transmitting station system is designed and architecture is proposed. The developed system is installed in the field, and the performance evaluation results is presented.

Application of Rapid Static Method on Minor Control Point Surveying Using the Global Positioning System (GPS측량기를 이용한 고속스테틱법에 의한 공공기준점 측량 및 응용)

  • 최윤수;김경진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.2
    • /
    • pp.195-206
    • /
    • 1997
  • By this time, in order to measure baseline in a few minutes, we must have used expensive dual frequency receiver. Recently, low-priced single frequency receiver have taken place of dual frequency receiver at short base-line by advancement in software development, improvements in geodetic survey receiver system. In this study, according to the observation time and measurement interval, we analyzed differences of each components of baseline by field experiment and we propose the criterion for the minor control point surveying by single frequency GPS receiver.

  • PDF