• 제목/요약/키워드: global hydrodynamic model

검색결과 40건 처리시간 0.022초

전지구 고해상도 수문모델 적용을 위한 격자유량 추정 방법 적용 연구 (Application of a Method Estimating Grid Runoff for a Global High-Resolution Hydrodynamic Model)

  • 류영;지희숙;황승언;이조한
    • 대기
    • /
    • 제30권2호
    • /
    • pp.155-167
    • /
    • 2020
  • In order to produce more detailed and accurate information of river discharge and freshwater discharge, global high-resolution hydrodynamic model (CaMa-Flood) is applied to an operational land surface model of global seasonal forecast system. In addition, bias correction to grid runoff for the hydrodynamic model is attempted. CaMa-Flood is a river routing model that distributes runoff forcing from a land surface model to oceans or inland seas along continentalscale rivers, which can represent flood stage and river discharge explicitly. The runoff data generated by the land surface model are bias-corrected by using composite runoff data from UNH-GRDC. The impact of bias-correction on the runoff, which is spatially resolved on 0.5° grid, has been evaluated for 1991~2010. It is shown that bias-correction increases runoff by 30% on average over all continents, which is closer to UNH-GRDC. Two experiments with coupled CaMa-Flood are carried out to produce river discharge: one using this bias correction and the other not using. It is found that the experiment adapting bias correction exhibits significant increase of both river discharge over major rivers around the world and continental freshwater discharge into oceans (40% globally), which is closer to GRDC. These preliminary results indicate that the application of CaMa-Flood as well as bias-corrected runoff to the operational global seasonal forecast system is feasible to attain information of surface water cycle from a coupled suite of atmospheric, land surface, and hydrodynamic model.

3차원 동수역학모형-유류확산모형 연계를 통한 유출유 거동 모의 (Oil Spill Simulation by Coupling Three-dimensional Hydrodynamic Model and Oil Spill Model)

  • 정태화;손상영
    • 한국해양공학회지
    • /
    • 제32권6호
    • /
    • pp.474-484
    • /
    • 2018
  • In this study, a new numerical modeling system was proposed to predict oil spills, which increasingly occur at sea as a result of abnormal weather conditions such as global warming. The hydrodynamic conditions such as the flow velocity needed to calculate oil dispersion were estimated using a three dimensional hydrodynamic model based on the Navier-Stokes equation, which considered all of the physical variations in the vertical direction. This improved the accuracy compared to those estimated by the conventional shallow water equation. The advection-diffusion model for the spilled oil was combined with the hydrodynamic model to predict the movement and fate of the oil. The effects of absorption, weathering, and wind were also considered in the calculation process. The combined model developed in this study was then applied to various test cases to identify the characteristics of oil dispersion over time. It is expected that the developed model will help to establish initial response and disaster prevention plans in the event of a nearshore oil spill.

천해에 적용가능한 태풍 해일-조석-파랑 수치모델 개발 2. 태풍 매미에 의한 해일-조석-파랑 모델의 정확성 검토 (Development of the Combined Typhoon Surge-Tide-Wave Numerical Model 2. Verification of the Combined model for the case of Typhoon Maemi)

  • 천제호;안경모;윤종태
    • 한국해안·해양공학회논문집
    • /
    • 제21권1호
    • /
    • pp.79-90
    • /
    • 2009
  • 본 논문에서는 심해부터 천해에 까지 적용가능한 동적결합형 태풍 해일-조석-파랑 수치모델을 태풍 매미에 적용하여 모델의 안정성과 정확성을 검증하였다. 동적결합형 모델은 해수유동 모델인 POM을 수정한 모듈과 심해 풍파모델인 WAM을 심해부터 천해까지 적용가능하도록 수정한 모듈로 구성되어 있다. 수정 POM 모듈에서 조위, 조류 와 해일을 계산하며, 수정 WAM 모듈에서 풍파를 계산하여 상호 계산된 결과를 주고 받도록 결합된 동적결합형 모델이다. 수정 WAM 모듈에서는 잉여응력과 바람에 의한 마찰응력, 해수면 조도계수 등의 계산결과가 POM으로 제공되며 수정 POM 모듈에서는 유속, 조위면 등의 정보가 WAM으로 제공된다. 개발된 수치모델을 태풍 매미에 적용하여 계산된 결과를 관측된 파랑 및 조위자료와 비교하여 정확성을 검증하였다.

GLOBAL AXISYMMETRIC SOLUTIONS TO THE 3D NAVIER-STOKES-POISSON-NERNST-PLANCK SYSTEM IN THE EXTERIOR OF A CYLINDER

  • Zhao, Jihong
    • 대한수학회보
    • /
    • 제58권3호
    • /
    • pp.729-744
    • /
    • 2021
  • In this paper we prove global existence and uniqueness of axisymmetric strong solutions for the three dimensional electro-hydrodynamic model based on the coupled Navier-Stokes-Poisson-Nernst-Planck system in the exterior of a cylinder. The key ingredient is that we use the axisymmetry of functions to derive the Lp interpolation inequalities, which allows us to establish all kinds of a priori estimates for the velocity field and charged particles via several cancellation laws.

Parametric geometric model and shape optimization of an underwater glider with blended-wing-body

  • Sun, Chunya;Song, Baowei;Wang, Peng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권6호
    • /
    • pp.995-1006
    • /
    • 2015
  • Underwater glider, as a new kind of autonomous underwater vehicles, has many merits such as long-range, extended-duration and low costs. The shape of underwater glider is an important factor in determining the hydrodynamic efficiency. In this paper, a high lift to drag ratio configuration, the Blended-Wing-Body (BWB), is used to design a small civilian under water glider. In the parametric geometric model of the BWB underwater glider, the planform is defined with Bezier curve and linear line, and the section is defined with symmetrical airfoil NACA 0012. Computational investigations are carried out to study the hydrodynamic performance of the glider using the commercial Computational Fluid Dynamics (CFD) code Fluent. The Kriging-based genetic algorithm, called Efficient Global Optimization (EGO), is applied to hydrodynamic design optimization. The result demonstrates that the BWB underwater glider has excellent hydrodynamic performance, and the lift to drag ratio of initial design is increased by 7% in the EGO process.

천해에 적용가능한 태풍 해일-조석-파랑 수치모델 개발 1. 해수유동 모델의 정확성 검토 (Development of the Combined Typhoon Surge-Tide-Wave Numerical Model Applicable to Shallow Water 1. Validation of the Hydrodynamic Part of the Model)

  • 천제호;안경모;윤종태
    • 한국해안·해양공학회논문집
    • /
    • 제21권1호
    • /
    • pp.63-78
    • /
    • 2009
  • 본 논문에서는 천해에 적용 가능한 동적결합형 태풍 해일-조석-파랑 수치모델의 개발과 개발된 모델의 정확성을 검증하였다. 태풍 해일과 조석 수치모델은 POM (Princeton Ocean Model)을 기반으로 하였으며, 풍파 파랑 수치모델은 WAM (Wave Model)을 기반으로 천해에 적용할 수 있도록 수정하여 두 모델을 동적으로 결합하였다. 연속된 두 개의 논문 중에 첫 번째 논문인 본 논문에서는 해일과 조석을 수치 모의하는 해수유동 부분의 수치모의의 안정성과 정확성을 검증하였다. 수치모의의 안정성과 정확성 향상을 위하여 기존의 POM 모델의 난류 수치모델 부분과 연직속도 계산 알고리즘을 수정 보완하였다. 수정된 POM 모델의 정확성과 수치적 안정성 검증을 위하여 해석해와 실 해역에서 측정된 관측결과와 비교하였으며, 수정된 POM 모델이 기존의 POM 모델보다 수치계산의 안정성과 정확성이 개선되었음을 확인할 수 있었다.

Current effects on global motions of a floating platform in waves

  • Shen, Meng;Liu, Yuming
    • Ocean Systems Engineering
    • /
    • 제7권2호
    • /
    • pp.121-141
    • /
    • 2017
  • The purpose of this paper is to understand and model the slow current (~2 m/s) effects on the global response of a floating offshore platform in waves. A time-domain numerical simulation of full wave-current-body interaction by a quadratic boundary element method (QBEM) is applied to compute the hydrodynamic loads and motions of a floating body under the combined influence of waves and current. The study is performed in the context of linearized potential flow theory that is sufficient in understanding the leading-order current effect on the body motion. The numerical simulations are validated by quantitative comparisons of the hydrodynamic coefficients with the WAMIT prediction for a truncated vertical circular cylinder in the absence of current. It is found from the simulation results that the presence of current leads to a loss of symmetry in flow dynamics for a tension-leg platform (TLP) with symmetric geometry, resulting in the coupling of the heave motion with the surge and pitch motions. Moreover, the presence of current largely affects the wave excitation force and moment as well as the motion of the platform while it has a negligible influence on the added mass and damping coefficients. It is also found that the current effect is strongly correlated with the wavelength but not frequency of the wave field. The global motion of a floating body in the presence of a slow current at relatively small encounter wave frequencies can be satisfactorily approximated by the response of the body in the absence of current at the intrinsic frequency corresponding to the same wavelength as in the presence of current. This finding has a significant implication in the model test of global motions of offshore structures in ocean waves and currents.

Slotted hydrofoil design optimization to minimize cavitation in amphibious aircraft application: A numerical simulation approach

  • Conesa, Fernando Roca;Liem, Rhea Patricia
    • Advances in aircraft and spacecraft science
    • /
    • 제7권4호
    • /
    • pp.309-333
    • /
    • 2020
  • The proposed study aims to numerically investigate the performance of hydrofoils in the context of amphibious aircraft application. In particular, we also study the effectiveness of a slotted hydrofoil in minimizing the cavitation phenomenon, to improve the overall water take-off performance of an amphibious aircraft. We use the ICON A5 as a base model for this study. First, we propose an approach to estimate the required hydrofoil surface area and to select the most suitable airfoil shape that can minimize cavitation, thus improving the hydrodynamic efficiency. Once the hydrofoil is selected, we perform 2D numerical studies of the hydrodynamic and cavitating characteristics of a non-slotted hydrofoil on ANSYS Fluent. In this work, we also propose to use a slotted hydrofoil to be a passive method to control the cavitation performance through the boundary layer control. Numerical results of several slotted configurations demonstrate notable improvement on the cavitation performance. We then perform a multiobjective optimization with a response surface model to simultaneously minimize the cavitation and maximize the hydrodynamic efficiency of the hydrofoil. The optimization takes the slot geometry, including the slot angle and lengths, as the design variables. In addition, a global sensitivity study has been carried and it shows that the slot widths are the more dominant factors.

Global hydroelastic analysis of ultra large container ships by improved beam structural model

  • Senjanovic, Ivo;Vladimir, Nikola;Tomic, Marko;Hadzic, Neven;Malenica, Sime
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.1041-1063
    • /
    • 2014
  • Some results on the hydroelasticity of ultra large container ships related to the beam structural model and restoring stiffness achieved within EU FP7 Project TULCS are summarized. An advanced thin-walled girder theory based on the modified Timoshenko beam theory for flexural vibrations with analogical extension to the torsional problem, is used for formulation of the beam finite element for analysis of coupled horizontal and torsional ship hull vibrations. Special attention is paid to the contribution of transverse bulkheads to the open hull stiffness, as well as to the reduced stiffness of the relatively short engine room structure. In addition two definitions of the restoring stiffness are considered: consistent one, which includes hydrostatic and gravity properties, and unified one with geometric stiffness as structural contribution via calm water stress field. Both formulations are worked out by employing the finite element concept. Complete hydroelastic response of a ULCS is performed by coupling 1D structural model and 3D hydrodynamic model as well as for 3D structural and 3D hydrodynamic model. Also, fatigue of structural elements exposed to high stress concentration is considered.

EFDC 모형의 낙동강 하류부 수리해석 적용성 평가 (Assessment of EFDC Model for Hydrodynamic Analysis in the Nakdong River)

  • 허영택;박진혁
    • 한국수자원학회논문집
    • /
    • 제42권4호
    • /
    • pp.309-317
    • /
    • 2009
  • 최근 지구온난화에 따른 해수면 상승과 태풍의 내습으로 인하여 발생되는 폭풍해일 및 집중호우에 대하여 낙동강 하류부의 수리거동을 수치모형(EFDC)을 이용하여 해석하였다. 낙동강 하구둑을 포함한 하류부 일대에 대해 수리거동을 해석하기 위하여 대상영역을 진동에서 가덕도를 포함한 외해부까지 확장하였다. 수치모형에 의한 수위의 재현성을 검토하기 위하여 2003년 및 2006년 발생한 태풍 호우사상을 대상으로 각 수위관측지점에서의 관측 수위와 계산수위를 비교 하였다. 금번 실시된 연구결과 수치해석에 사용된 수치모형(EFDC)은 높은 재현성을 가지고 있음을 알 수 있었고 차후 폭넓은 연구에 활용가능성이 높다고 판단되었다.