Development of the Combined Typhoon Surge-Tide-Wave Numerical Model 2. Verification of the Combined model for the case of Typhoon Maemi

천해에 적용가능한 태풍 해일-조석-파랑 수치모델 개발 2. 태풍 매미에 의한 해일-조석-파랑 모델의 정확성 검토

  • Chun, Je-Ho (Institue of Construction and Environmental Research, Handong Global University) ;
  • Ahn, Kyung-Mo (School of Spatial Environment System Engineering, Handong Global University) ;
  • Yoon, Jong-Tae (Department of Civil Engineering, Kyungsung University)
  • 천제호 (한동대학교 건설환경연구소) ;
  • 안경모 (한동대학교 공간환경시스템공학부) ;
  • 윤종태 (경성대학교 토목공학과)
  • Published : 2009.02.28

Abstract

This paper presents the development of dynamically combined Typhoon generated surge-tide-wave numerical model which is applicable from deep to shallow water. The dynamically coupled model consists of hydrodynamic module and wind wave module. The hydrodynamic module is modified from POM and wind wave module is modified from WAM to be applicable from deep to shallow water. Hydrodynamic module computes tidal currents, sea surface elevations and storm surges and provide these information to wind wave module. Wind wave mudule computes wind waves and provides computed information such as radiation stress, sea surface roughness and shear stress due to winds. The newly developed model was applied to compute the surge, tide and wave fields by typhoon Maemi. Verification of model performance was made by comparison of measured waves and tide data with simulated results.

본 논문에서는 심해부터 천해에 까지 적용가능한 동적결합형 태풍 해일-조석-파랑 수치모델을 태풍 매미에 적용하여 모델의 안정성과 정확성을 검증하였다. 동적결합형 모델은 해수유동 모델인 POM을 수정한 모듈과 심해 풍파모델인 WAM을 심해부터 천해까지 적용가능하도록 수정한 모듈로 구성되어 있다. 수정 POM 모듈에서 조위, 조류 와 해일을 계산하며, 수정 WAM 모듈에서 풍파를 계산하여 상호 계산된 결과를 주고 받도록 결합된 동적결합형 모델이다. 수정 WAM 모듈에서는 잉여응력과 바람에 의한 마찰응력, 해수면 조도계수 등의 계산결과가 POM으로 제공되며 수정 POM 모듈에서는 유속, 조위면 등의 정보가 WAM으로 제공된다. 개발된 수치모델을 태풍 매미에 적용하여 계산된 결과를 관측된 파랑 및 조위자료와 비교하여 정확성을 검증하였다.

Keywords

References

  1. 심재설, 이재학, 민인기(2004). 이어도 해양과학기지에서 관측한 태풍 매미 자료 분석, 한반도 해역의 고파, 한국해안.해양공학회, 폭풍해일 워크숍 논문집, 49-55
  2. 천제호, 안경모, 윤종태(2006). 음해법을 이용한 WAM모형의 태풍파랑 수치모의, 한국해안.해양공학회지, 18(4), 294-300
  3. 천제호, 안경모, 윤종태(2007). 천해역으로 확장된 WAM모형에 의한 영일만 파랑 모의, 한국해안.해양공학회지, 19(6), 511-520
  4. 천제호, 안경모, 윤종태(2008). WAM모형의 천해역 확장에 관한 연구, 20(2), 한국해안.해양공학회논문집, 148-156
  5. 최병호(2004). 태풍 매미호에 의한 해안 재해, 한반도 해역의 고파, 한국해안.해양공학회 폭풍해일 워크숍 논문집, 1-34
  6. 한국해양연구원(2003). 부산신항 해양수리현상 연구개발 용역, 한국해양연구원 연안.항만공학연구본부
  7. Choi, B.H., Eum, H.M., Kim, H.S., Jeong, W.M. and Shim, J.S. (2004). Wave-tide-surge coupled simulation for typhoon Maemi, Workshop on waves and storm surges around Korean peninsula, 121-144.
  8. Cieslikiewcz, W. and Herman, A. (2002). Wave and current modelling over the Baltic sea and the Gdansk bay, Proc. 28th Int'l Conf. Coastal Eng., Cardiff, Uk., 176-187
  9. Janssen, P.A.E.M. (1991). Quasi-linear theory of wind-wave generation applied to wave forecasting, Journal of Physical Oceanography, 19, 745-754 https://doi.org/10.1175/1520-0485(1989)019<0745:WISATD>2.0.CO;2
  10. Kawai, H., Tomita, T., Hiraishi, T., Kim, D.-S., and Kang, Y.-K. (2004). Hindcasting of storm surge by typhoon 0314 (Maemi), Workshop on waves and storm surges around Korean peninsula, 67-73
  11. Kowalik, Z. and Murty, T.S. (1993). Numerical modeling of ocean dynamics, World Scientific Publishing Co. Pte. Ltd.
  12. Madsen, O.S., Wright, L.D., Boon, J.D. and Chisholm, T.A. (1993). Wind stress, bed roughness and sediment suspension on the inner shelf during an extreme storm event, Continental shelf research, 13(11), 1303-1324 https://doi.org/10.1016/0278-4343(93)90054-2
  13. Madsen, O.S. (1994). Spectral wave-current bottom boundary layer flows, Proc. 24th Int'l Conf. Coastal Eng., Kobe, Japan, 384-398
  14. Mastenbroek, C., Burgers, G. and Janssen, P.A.E.M. (1993). The dynamic coupling of a wave model and a storm surge model through the atmosphere boundary layer, Journal of physical oceanography, 23, 1856-1866 https://doi.org/10.1175/1520-0485(1993)023<1856:TDCOAW>2.0.CO;2
  15. Monbaliu, J., Padilla-Hernandez, R., Hargreaves, J. C., Albiach, J.C.C., Luo, W., Sclavo, M. and Gunther, H. (2000). The spectral wave model, WAM, adapted for applications with high spatial resolution, Coastal Engineering, 41(1), 41-62 https://doi.org/10.1016/S0378-3839(00)00026-0
  16. Moon, I.-J. (2000). Development of a coupled ocean-wave circulation model its application to numerical experiments for wind waves, storm surges and ocean circulation for the Yellow and East China seas, Seoul National University, Ph.D Dissertation
  17. Moon, I.-J. (2005). Impact of a coupled ocean wave-tide-circulation system on coastal modeling, Ocean modeling, 8, 203-236
  18. Nielson, P. (2005). Coastal bottom boundary layers and sediment transport, reprinted, World Scientific, Co. Pte. Ltd.
  19. Osuna, P. and Monbaliu, J. (2004). Wave-current interaction in the southern North sea, Journal of marine systems, 52, 65-87 https://doi.org/10.1016/j.jmarsys.2004.03.002
  20. Soulsby, R. (1997). Dynamics of marine sands A manual for practical applications, Thomas Telford
  21. Xia, H., Xia, Z. and Zhu, L. (2004). Vertical variation in radiation stress and wave-induced current, Coastal engineering, 51, 309-321 https://doi.org/10.1016/j.coastaleng.2004.03.003
  22. Xie, L., Wu, K., Pietrafesa, L. J. and Zhang, C. (2001). A numerical study wave-current interaction through surface and bottom stresses : wind-driven circulation in the South Atlantic Bight under uniform winds, Journal of geophysical research, 106(16), 841-885
  23. Xie, L., Liu, H. and Peng, M. (2008). The effect of wave-current interactions on the storm surge and inundation in Charleston Harbor during Hurricane Hugo 1989, Ocean modelling, 20, 252-269 https://doi.org/10.1016/j.ocemod.2007.10.001