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GLOBAL AXISYMMETRIC SOLUTIONS TO

THE 3D NAVIER–STOKES–POISSON–NERNST–PLANCK

SYSTEM IN THE EXTERIOR OF A CYLINDER

Jihong Zhao

Abstract. In this paper we prove global existence and uniqueness of ax-
isymmetric strong solutions for the three dimensional electro-hydrodyna-

mic model based on the coupled Navier–Stokes–Poisson–Nernst–Planck

system in the exterior of a cylinder. The key ingredient is that we use
the axisymmetry of functions to derive the Lp interpolation inequalities,

which allows us to establish all kinds of a priori estimates for the velocity
field and charged particles via several cancellation laws.

1. Introduction

In this paper, we study the following dissipative system of nonlinear and
nonlocal equations modeling the flow of electro-hydrodynamics in a connected
open set Ω ⊂ R3 with smooth boundary ∂Ω:

(1)



ut + (u · ∇)u−∆u+∇P = ∆Ψ∇Ψ,

div u = 0,

n−t + (u · ∇)n− = ∇ · (∇n− − n−∇Ψ),

n+
t + (u · ∇)n+ = ∇ · (∇n+ + n+∇Ψ),

∆Ψ = n− − n+,

where u = (u1, u2, u3) and P denote the unknown vector velocity and scalar
pressure of fluid, respectively, n− and n+ denote the densities of binary diffuse
negatively and positively charged particles, respectively, and Ψ is the elec-
trostatic potential. All physical parameters in (1) have been taken to be 1
for simplicity of presentation. Furthermore, in the domain Ω where the fluid
occupies, the system (1) is assumed to supplement with the following initial
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conditions:

(2) (u, n−, n+)|t=0 = (u0, n
−
0 , n

+
0 ), div u0 = 0, n−0 > 0, n+

0 > 0 in Ω,

and the velocity field equations is determined by the no slip boundary condition:

u = 0 on ∂Ω× (0, T ),(3)

while the equations for the charged densities are determined by the pure Neu-
mann boundary conditions:

∂n−

∂ν
= 0,

∂n+

∂ν
= 0,

∂Ψ

∂ν
= 0 on ∂Ω× (0, T ),(4)

where ν denotes the unit outward normal vector of ∂Ω.
The system (1)–(4) appears in the context as the Navier–Stokes–Poisson–

Nernst–Planck system in electro-hydrodynamics, which was intended to ac-
count for the electro-diffusion phenomenon in an incompressible electrical fluid
medium, for example, see [14,16]. Generally speaking, the self-consistent charge
transport is described by the Poisson–Nernst–Planck equations, while the fluid
motion is governed by the incompressible Navier–Stokes equations with forcing
terms. We refer the readers to see [16] for the detailed mathematical description
and physical background of this fluid-dynamical model.

If the flow is charge-free, i.e., n− = n+ = Ψ = 0, then the system (1) reduces
to the following incompressible Navier–Stokes equations:

(5)

{
ut + (u · ∇)u−∆u+∇P = 0,

div u = 0.

In their celebrated works, Leray [12] and Hopf [5] proved that the n-dimensional
(n ≥ 2) Navier–Stokes equations (5), subject to the initial data of L2-finite en-
ergy, admits at least a global Leray–Hopf weak solution. It is well-known that
such a global weak solution is regular and unique in two dimensional case, but
in three dimensional case, the regularity and uniqueness of such weak solutions
still remains a challenging open problem in mathematical fluid dynamics. On
the other hand, many efforts have been made to study various solutions with
certain special structures, and the axisymmetric solution is such an important
case. For the axisymmetric Navier–Stokes equations without swirl, Ladyzhen-
skaya [9] and Ukhovskii–Yudovich [17] independently proved global existence,
uniqueness and regularity of axisymmetric weak solutions. Later on, Leonardi
et al. [11] gave a refined proof, and Abidi [2] extended this global regularity

result to certain initial data in critical space Ḣ
1
2 . For the axisymmetric Navier–

Stokes equations with non-trivial swirl, Ladyzhenskaya [10] and Abe–Seregin
[1] proved the global existence of unique axisymmetric strong solution in the ex-
terior of a cylinder subject to the no slip and Navier boundary conditions. The
crucial points for the analysis in [10] and [1] are the interpolation inequalities
and the maximum principle.
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To our knowledge, mathematical analysis of the system (1) was initiated
by Jerome [6], where the author established a local well-posedness theory and
stability under the inviscid limit based on the Kato’s semigroup framework.
Subsequently, local existence with any initial data and global existence with
small initial data in various critical functional spaces (e.g., Lebesgue and Besov
spaces) were established by [13, 18–20]. On the other hand, the global exis-
tence, as well as regularity and uniqueness, of weak solutions for the system
(1) adapted with various boundary conditions have been studied in two or three
dimensions by [3, 4, 7, 8, 15, 16], some analytical results similar to the Navier–
Stokes equations were obtained.

The main goal of this paper is to study global existence of axisymmetric
strong solutions for the electro-hydrodynamic system (1) in the exterior of
a cylinder subject to the initial boundary-value conditions (2)–(4). The key
ingredient is that we shall make use of axisymmetry of functions to derive
some Lp interpolation inequalities, which allow us to establish some crucial a
priori estimates for the velocity field and charged particles via several important
cancellation laws. Without loss of generality, we assume that

Ω = {x = (x1, x2, x3) ∈ R3,
√
x2

1 + x2
2 = δ > 0, x3 ∈ R}.

Denote a point in Ω by x. Let us consider the cylindrical coordinates:

r =
√
x2

1 + x2
2, θ = arctan

x2

x1
, z = x3,

and denote the three standard basis vectors are as follows:

er = (
x1

r
,
x2

r
, 0), eθ = (−x2

r
,
x1

r
, 0), ez = (0, 0, 1).

A function f or a vector function u = (ur, uθ, uz) is said to be axisymmetric if
f , ur, uθ and uz are independent of the angular variable θ, i.e., f and u has
the following forms:

f(x1, x2, x3) = f(r, z), u(x1, x2, x3) = ur(r, z)er + uθ(r, z)eθ + uz(r, z)ez.

Due to the uniqueness of strong solutions, it is clear that if the initial data
(u0, n

−
0 , n

+
0 ) is axisymmetric, then the strong solution (u, n−, n+) to the prob-

lem (1)–(4) is also axisymmetric.
Before we state the main result, let us introduce the following notations.

We denote by Lp(Ω), 1 < p < ∞ (or L∞(Ω)) the space of the usual scalar-
valued or vector-valued functions defined on Ω with the p-th power absolutely
integrable (or essentially bounded scalar-valued or vector-valued functions) for
the Lebesgue measure. For m ∈ N, 1 ≤ p ≤ ∞, the Sobolev space Wm,p(Ω) is
the space of functions in Lp(Ω) with derivatives of order less than or equal to
m in Lp(Ω), i.e.,

Wm,p(Ω) = {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω), |α| ≤ m}.
In particular, when p = 2, we denote Hm(Ω) = Wm,2(Ω). Let C∞0 (Ω) be the
space of C∞ functions with compact support contained in Ω. The closure of
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C∞0 (Ω) in Wm,p(Ω) is denoted by Wm,p
0 (Ω) (Hm

0 (Ω) when p = 2). Moreover,
let C∞0,σ(Ω) be the space

C∞0,σ(Ω) = {u ∈ C∞0 (Ω) : div u = 0}.

The closure of C∞0,σ(Ω) in H1(Ω) is denoted by H1
0,σ(Ω).

Our main result is stated as follows.

Theorem 1.1. Let Ω = {x = (x1, x2, x3) ∈ R3,
√
x2

1 + x2
2 = δ > 0, x3 ∈

R}. Assume that (u0, n
−
0 , n

+
0 ) is an axisymmetric initial data and satisfy the

following regularity conditions:

(6) u0 ∈ H2(Ω)∩H1
0,σ(Ω), n−0 , n

+
0 ∈ H2(Ω)∩L1(Ω), n−0 > 0, n+

0 > 0 in Ω.

Then for every T > 0, there exists a unique axisymmetric strong solution
(u, n−, n+) to the initial-boundary value problem (1)–(4) with

u ∈ C([0, T ], H1
0,σ(Ω)) ∩ L∞(0, T ;H2(Ω)), n−, n+ ∈ C([0, T ], H2(Ω) ∩ L1(Ω))

and

ut, n
−
t , n

+
t ∈ L∞(0, T ;L2(Ω)), ∇ut,∇n−t ,∇n+

t ∈ L2(0, T ;L2(Ω)).

We shall prove Theorem 1.1 in the next section. Throughout the paper,
we shall use the notation ‖ · ‖Lp instead of ‖ · ‖Lp(Ω), and ‖ · ‖Hm instead of
‖·‖Hm(Ω) for simplicity. We denote by C the harmless positive constant, which
may depend on initial datum and its value may change from line to line, the
special dependence will be pointed out explicitly in the text if necessary.

2. The proof of Theorem 1.1

We first prove the following crucial interpolation inequalities for axisymmet-
ric functions in Lebesgue spaces.

Lemma 2.1. Let D = {(r, z) : r ≥ δ > 0, z ∈ R}. Then for any axisymmetric
vector function u = ur(r, z)er + uθ(r, z)eθ + uz(r, z)ez satisfying ui ∈ H1(D)
for i = r, θ, z, there exists a constant C depending only on p and δ such that
for any 2 ≤ p <∞, we have

(7) ‖u‖Lp(Ω) ≤ C(p, δ)(‖u‖
2
p

L2(Ω)‖∇u‖
1− 2

p

L2(Ω) + ‖u‖L2(Ω)),

where Ω = {x ∈ R3 :
√
x2

1 + x2
2 = δ > 0, x3 ∈ R} is the corresponding domain

of D in Cartesian coordinates. We emphasize here that (7) also holds for any
axisymmetric scalar function.

Proof. Notice that in the Cartesian coordinates,

u1 =
x1

r
ur − x2

r
uθ, u2 =

x2

r
ur +

x1

r
uθ, u3 = uz.

Then we have

‖u‖pLp =

∫
Ω

|u|pdx =

∫
Ω

(
(
x1

r
ur − x2

r
uθ)2 + (

x2

r
ur +

x1

r
uθ)2 + (uz)2

) p
2

dx
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=

∫
Ω

(|ur|2 + |uθ|2 + |uz|2)
p
2 dx

≤ C(p)

∫
Ω

(|ur|p + |uθ|p + |uz|p)dx.

By using the Gagliardo–Nirenberg’s inequality in two dimensions, we know that
for i = r, θ, z,

‖ui(r, z)‖pLp(D) ≤ C(p)‖ui(r, z)‖2L2(D)‖∇̃u
i(r, z)‖p−2

L2(D),

where ∇̃ := (∂r, ∂z) is the two dimensional gradient operator. It follows that

‖ui‖pLp(Ω) =

∫
Ω

|ui|pdx = 2π

∫
D

|ui|prdrdz = 2π

∫
D

(|ui|r
1
p )pdrdz

≤ C(p)

(∫
D

(|ui|r
1
p )2drdz

)(∫
D

(|∂rui|r
1
p )2+

1

p2
(|ui|r

1
p−1)2+(|∂zui|r

1
p )2drdz

) p
2−1

≤ C(p)

(∫
D

(|ui|r
1
p )2drdz

)(∫
D

(|∂rui|r
1
p )2 + (|∂zui|r

1
p )2drdz

) p
2−1

+ C(p)

(∫
D

(|ui|r
1
p )2drdz

)(∫
D

(|ui|r
1
p−1)2drdz

) p
2−1

.

Since 2 ≤ p <∞, r ≥ δ > 0, it is easily seen that

r
2
p = rr

2
p−1 ≤ rδ

2
p−1, r

2
p−2 ≤ rδ

2
p−3.

This yields immediately that

‖ui‖pLp(Ω) ≤ C(p, δ)
[ ∫

D

|ui|2rdrdz
(∫

D

(|∂rui|2 + |∂zui|2)rdrdz

) p
2−1

+

(∫
D

|ui|2rdrdz
) p

2 ]
≤ C(p, δ)

(
‖ui‖2L2(Ω)‖∇u

i‖p−2
L2(Ω) + ‖ui‖pL2(Ω)

)
.

The proof of Lemma 2.1 is achieved. �

Next we establish the following several crucial a priori estimates. Let us
introduce two new functions v := n− + n+ and w := n− − n+, and then the
problem (1) is reduced into the following system of equations:

(8)



ut + (u · ∇)u−∆u+∇P = w∇Ψ,

div u = 0,

vt + (u · ∇)v = ∇ · (∇v − w∇Ψ),

wt + (u · ∇)w = ∇ · (∇w − v∇Ψ),

∆Ψ = w,
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while initial conditions (2) and boundary conditions (3)–(4) are correspondingly
changed into the following way:

(9) (u, v, w)|t=0 = (u0, v0, w0) = (u0, n
−
0 + n+

0 , n
−
0 − n

+
0 ), div u0 = 0 in Ω

and

u = 0,
∂v

∂ν
= 0,

∂w

∂ν
= 0,

∂Ψ

∂ν
= 0 on ∂Ω× (0, T ).(10)

It is clear that if (u, n−, n+) is an axisymmetric strong solution of the problem
(1)–(4) (P and Ψ can be determined by (u, n−, n+)), then (u, v, w) is an ax-
isymmetric strong solution of the problem (8)–(10) (P and Ψ can be determined
by (u, v, w)), and vice verse. Therefore, we aim at establishing some crucial a
priori estimates of axisymmetric strong solutions for the problem (8)–(10).

Lemma 2.2. Let the assumptions (6) be in force, and let (u, v, w) be the cor-
responding axisymmetric strong solution to the problem (8)–(10) on [0, T ] for
any 0 < T ≤ ∞. Then we have

sup
0≤t≤T

‖(v(t), w(t))‖2L2 + 2

∫ T

0

‖(∇v(t),∇w(t))‖2L2dt ≤ ‖(v0, w0)‖2L2 ;(11)

sup
0≤t≤T

‖(u(t),∇Ψ(t))‖2L2 +2

∫ T

0

‖(∇u(t),∆Ψ(t))‖2L2dt ≤‖(u0,∇Ψ(0))‖2L2 .(12)

Proof. Multiplying the third equation of (8) by v and integrating over Ω, one
has

(13)
1

2

d

dt
‖v‖2L2 + ‖∇v‖2L2 +

∫
Ω

v∇w · ∇Ψdx+

∫
Ω

vw2dx = 0,

where we have used integration by parts, the boundary conditions (10) and the
divergence free condition div u = 0 to yield∫

Ω

(u · ∇)vvdx =
1

2

∫
Ω

(u · ∇)v2dx = −1

2

∫
Ω

(∇ · u)v2dx = 0.

Repeating the same steps for w, we have

(14)
1

2

d

dt
‖w‖2L2 + ‖∇w‖2L2 +

∫
Ω

w∇v · ∇Ψdx+

∫
Ω

vw2dx = 0.

After integration by parts, we obtain the following cancellation by consideration
of the fifth equation of (8) and the boundary conditions (10):∫

Ω

w∇v · ∇Ψdx+

∫
Ω

v∇w · ∇Ψdx = −
∫

Ω

vw2dx.

Therefore, adding up the above estimates (13) and (14) yields

(15)
1

2

d

dt
‖(v, w)‖2L2 + ‖(∇v,∇w)‖2L2 +

∫
Ω

vw2dx = 0.
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Integrating (15) over [0, t] for all 0 < t ≤ T implies that

sup
0≤t≤T

‖(v, w)‖2L2 + 2

∫ T

0

‖(∇v,∇w)‖2L2dτ + 2

∫ T

0

∫
Ω

vw2dxdτ(16)

= ‖(v0, w0)‖2L2 .

Since v is nonnegative, which can be ensured by the nonnegativity of n− and
n+ (see for example [6, 16]), we get (11).

To prove (12), multiplying the first equations of (8) by u, after integration
by parts, it can be easily seen that

1

2

d

dt
‖u‖2L2 + ‖∇u‖2L2 =

∫
Ω

w∇Ψ · udx.(17)

On the other hand, multiplying the fourth equation of (8) by Ψ, after integra-
tion by parts and using the fifth equation of (8), one has

(18)
1

2

d

dt
‖∇Ψ‖2L2 +

∫
Ω

|∆Ψ|2dx+

∫
Ω

v|∇Ψ|2dx+

∫
Ω

u · ∇Ψwdx = 0.

Adding up the above estimates (17) and (18) yields that

(19)
1

2

d

dt
‖(u,∇Ψ)‖2L2 + ‖(∇u,∆Ψ)‖2L2 +

∫
Ω

v|∇Ψ|2dx = 0.

Then (12) follows by integrating (19) in the time interval [0, t] for any 0 < t ≤ T ,
and using v is nonnegative. The proof of Lemma 2.2 is achieved. �

Lemma 2.3. Let the assumptions (6) be in force, and let (u, v, w) be the cor-
responding axisymmetric strong solution to the problem (8)–(10) on [0, T ] for
any 0 < T <∞. Then we have

sup
0≤t≤T

‖(∇v(t),∇w(t))‖2L2 +

∫ T

0

‖(∆v(t),∆w(t))‖2L2dt ≤ C,(20)

where C = C(‖u0‖L2 , ‖(v0, w0)‖H1∩L1 , T ).

Proof. Multiplying the third equation of (8) by −∆v and integrating over Ω,
after integration by parts, one gets

1

2

d

dt
‖∇v‖2L2 + ‖∆v‖2L2(21)

=

∫
Ω

(u · ∇)v∆vdx+

∫
Ω

∇w · ∇Ψ∆vdx+

∫
Ω

w2∆vdx.

The three terms on the right hand side of (21) can be bounded in the follow-
ing way by using Hölder’s inequality, (11), (12), (7) with p = 4 and Young’s
inequality,∫

Ω

(u · ∇)v∆vdx

≤ ‖u‖L4‖∇v‖L4‖∆v‖L2
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≤ C(‖u‖
1
2

L2‖∇u‖
1
2

L2 + ‖u‖L2)(‖∇v‖
1
2

L2‖∆v‖
1
2

L2 + ‖∇v‖L2)‖∆v‖L2

≤ C(1 + ‖∇u‖
1
2

L2)(‖∇v‖
1
2

L2‖∆v‖
1
2

L2 + ‖∇v‖L2)‖∆v‖L2

≤ C(‖∇u‖
1
2

L2‖∇v‖
1
2

L2 +‖∇v‖
1
2

L2)‖∆v‖
3
2

L2 +C(‖∇u‖
1
2

L2‖∇v‖L2 +‖∇v‖L2)‖∆v‖L2

≤ 1

8
‖∆v‖2L2 + C(1 + ‖∇u‖2L2)‖∇v‖2L2 ;∫

Ω

∇w · ∇Ψ∆vdx

≤ ‖∇w‖L4‖∇Ψ‖L4‖∆v‖L2

≤ C(‖∇w‖
1
2

L2‖∆w‖
1
2

L2 + ‖∇w‖L2)(‖∇Ψ‖
1
2

L2‖∆Ψ‖
1
2

L2 + ‖∇Ψ‖L2)‖∆v‖L2

≤ C(‖∇w‖
1
2

L2‖∆w‖
1
2

L2 + ‖∇w‖L2)‖∆v‖L2

≤ 1

8
‖∆v‖2L2 + C(‖∇w‖L2‖∆w‖L2 + ‖∇w‖2L2)

≤ 1

8
‖∆v‖2L2 +

1

8
‖∆w‖2L2 + C‖∇w‖2L2 ;∫

Ω

w2∆vdx ≤ ‖w‖2L4‖∆v‖L2 ≤ C(‖w‖L2‖∇w‖L2 + ‖w‖2L2)‖∆v‖L2

≤ 1

8
‖∆v‖2L2 + C(‖∇w‖2L2 + 1).

Taking the above three estimates into (21) yields

d

dt
‖∇v‖2L2 +

5

4
‖∆v‖2L2(22)

≤ 1

4
‖∆w‖2L2 + C(1 + ‖∇u‖2L2)(1 + ‖∇v‖2L2 + ‖∇w‖2L2).

Repeating the same calculations for the equation of w, we get

d

dt
‖∇w‖2L2 +

5

4
‖∆w‖2L2(23)

≤ 1

4
‖∆v‖2L2 + C(1 + ‖∇u‖2L2)(1 + ‖∇v‖2L2 + ‖∇w‖2L2).

Adding up (22) and (23) provides

d

dt
‖(∇v,∇w)‖2L2 + ‖(∆v,∆w)‖2L2(24)

≤ C(1 + ‖∇u‖2L2)(1 + ‖∇v‖2L2 + ‖∇w‖2L2).

Notice that ‖∇Ψ(0)‖L2 can be controlled by ‖w0‖L2∩L1 . Therefore, applying
the Gronwall’s inequality to (24) yields that

sup
0≤t≤T

‖(∇v,∇w)‖2L2 +

∫ T

0

‖(∆v,∆w)‖2L2dt ≤ C(25)



GLOBAL AXISYMMETRIC SOLUTIONS TO THE 3D NSPNP SYSTEM 737

for some C = C(‖u0‖L2 , ‖(v0, w0)‖H1∩L1 , T ). The proof of Lemma 2.3 is
achieved. �

Lemma 2.4. Let the assumptions (6) be in force, and let (u, v, w) be the cor-
responding axisymmetric strong solution to the problem (8)–(10) on [0, T ] for
any 0 < T <∞. Then we have

sup
0≤t≤T

‖∇u(t)‖2L2 +

∫ T

0

‖∆u(t)‖2L2dt ≤ C(‖u0‖H1 , ‖(v0, w0)‖L2∩L1 , T ).(26)

Proof. Multiplying the first equations of (8) by −∆u and integrating over Ω,
after integration by parts, we get

1

2

d

dt
‖∇u‖2L2 + ‖∆u‖2L2 =

∫
Ω

(u · ∇)u∆udx−
∫

Ω

w∇Ψ∆udx.(27)

Similarly, we can estimate two terms on the right hand side of (27) based on
the facts (11), (12) and (20):∫

Ω

(u · ∇)u∆udx

≤ ‖u‖L4‖∇u‖L4‖∆u‖L2

≤ C(‖u‖
1
2

L2‖∇u‖
1
2

L2 + ‖u‖L2)(‖∇u‖
1
2

L2‖∆u‖
1
2

L2 + ‖∇u‖L2)‖∆u‖L2

≤ C(‖∇u‖
1
2

L2 + ‖∇u‖L2)‖∆u‖
3
2

L2 + C(‖∇u‖L2 + ‖∇u‖
3
2

L2)‖∆u‖L2

≤ 1

4
‖∆u‖2L2 + C(1 + ‖∇u‖2L2)‖∇u‖2L2 ;

−
∫

Ω

w∇Ψ∆udx

≤ ‖w‖L4‖∇Ψ‖L4‖∆u‖L2

≤ C(‖w‖
1
2

L2‖∇w‖
1
2

L2 + ‖w‖L2)(‖∇Ψ‖
1
2

L2‖∆Ψ‖
1
2

L2 + ‖∇Ψ‖L2)‖∆u‖L2

≤ 1

4
‖∆u‖2L2 + C(1 + ‖∇w‖2L2).

From the above two estimates, it follows easily from (27) that

d

dt
‖∇u‖2L2 + ‖∆u‖2L2 ≤ C(1 + ‖∇u‖2L2 + ‖∇w‖2L2)(1 + ‖∇u‖2L2),(28)

which yields (26) by applying Gronwall’s inequality, (11) and (12). The proof
of Lemma 2.4 is achieved. �

Lemma 2.5. Let the assumptions (6) be in force, and let (u, v, w) be the cor-
responding axisymmetric strong solution to the problem (8)–(10) on [0, T ] for
any 0 < T <∞. Then we have

sup
0≤t≤T

‖(ut, vt, wt,∇Ψt)‖2L2 +

∫ T

0

‖(∇ut,∇vt,∇wt)‖2L2dt(29)



738 J. ZHAO

≤ C(‖u0‖H2 , ‖(v0, w0)‖H2∩L1 , T ).

Proof. Taking the derivative to the system (8) with respect to t, we see that

(30)


utt + (ut · ∇)u+ (u · ∇)ut −∆ut +∇Pt = wt∇Ψ + w∇Ψt,

vtt + (ut · ∇)v + (u · ∇)vt = ∇ · (∇vt − wt∇Ψ− w∇Ψt),

wtt + (ut · ∇)w + (u · ∇)wt = ∇ · (∇wt − vt∇Ψ− v∇Ψt),

∆Ψt = wt.

We first consider the estimates for vt and wt. Multiplying the second equa-
tion of (30) by vt, the third equation of (30) by wt, and integrating over Ω,
respectively, then adding up the resultant two equalities, we get

1

2

d

dt
‖(vt, wt)‖2L2 + ‖(∇vt,∇wt)‖2L2

= −
∫

Ω

(ut · ∇)v · vt + (ut · ∇)w · wtdx

−
∫

Ω

∇ · (wt∇Ψ)vt +∇ · (vt∇Ψ)wtdx

−
∫

Ω

∇ · (w∇Ψt)vt +∇ · (v∇Ψt)wtdx

:= I1 + I2 + I3.

(31)

Applying Hölder’s inequality, interpolation inequality (7) and Young’s inequal-
ity, and using (11), (12), (20) and (26), the right hand side of (31) can be
estimated as follows:

I1 ≤ ‖∇v‖L2‖ut‖L4‖vt‖L4 + ‖∇w‖L2‖ut‖L4‖wt‖L4

≤ C(‖ut‖
1
2

L2‖∇ut‖
1
2

L2 + ‖ut‖L2)(‖(vt, wt)‖
1
2

L2‖(∇vt,∇wt)‖
1
2

L2 + ‖(vt, wt)‖L2)

≤ 1

4
‖∇ut‖2L2 +

1

8
‖(∇vt,∇wt)‖2L2 + C(‖ut‖2L2 + ‖(vt, wt)‖2L2);

I2 = −
∫

Ω

wvtwtdx ≤ ‖w‖L2‖vt‖L4‖wt‖L4

≤ C(‖vt‖
1
2

L2‖∇vt‖
1
2

L2 + ‖vt‖L2)(‖wt‖
1
2

L2‖∇wt‖
1
2

L2 + ‖wt‖L2)

≤ 1

8
‖(∇vt,∇wt)‖2L2 + C‖(vt, wt)‖2L2 ;

I3 =

∫
Ω

(w∇Ψt · ∇vt + v∇Ψt · ∇wt)dx

≤ ‖w‖L4‖∇Ψt‖L4‖∇vt‖L2 + ‖v‖L4‖∇Ψt‖L4‖∇wt‖L2

≤ C(‖∇Ψt‖
1
2

L2‖∆Ψt‖
1
2

L2 + ‖∇Ψt‖L2)(‖∇vt‖L2 + ‖∇wt‖L2)

≤ 1

8
‖(∇vt,∇wt)‖2L2 +

1

4
‖∆Ψt‖2L2 + C(‖wt‖2L2 + ‖∇Ψt‖2L2),
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where we have used (20) and (26) to bound ‖(v, w)‖L4 in the derivation of I3:

‖(v, w)‖L4 ≤ C(‖(v, w)‖
1
2

L2‖(∇v,∇w)‖
1
2

L2 + ‖(v, w)‖L2) ≤ C.

Taking all above estimates into (31), we obtain

d

dt
‖(vt, wt)‖2L2 +

5

4
‖(∇vt,∇wt)‖2L2(32)

≤ 1

2
‖(∇ut,∆Ψt)‖2L2 +C‖(ut,∇Ψt, vt, wt)‖2L2 .

Next we derive the estimates for ut and ∇Ψt. Adding up the first equations
of (30) and the third equation of (30) tested with ut and Ψt, respectively, using
the relation ∆Ψt = wt, after integration by parts, we see that

1

2

d

dt
‖(ut,∇Ψt)‖2L2 + ‖(∇ut,∆Ψt)‖2L2

= −
∫

Ω

(ut · ∇)u · utdx+

∫
Ω

wt∇Ψ · utdx

+

∫
Ω

(u · ∇wt) ·Ψtdx+

∫
Ω

∇ · (vt∇Ψ + v∇Ψt)Ψtdx

:= I4 + I5 + I6 + I7,

(33)

where we have used the cancellation relation∫
Ω

w∇Ψt · utdx+

∫
Ω

(ut · ∇)wΨtdx = 0.

Applying (11), (12), (20) and (26) again, we can bound Ii (i = 4, 5, 6, 7) one
by one as follows:

I4 ≤ ‖∇u‖L2‖ut‖2L4 ≤ C(‖ut‖L2‖∇ut‖L2 + ‖ut‖2L2)

≤ 1

8
‖∇ut‖2L2 + C‖ut‖2L2 ;

I5 ≤ ‖wt‖L2‖∇Ψ‖L4‖ut‖L4

≤ C‖wt‖L2(‖∇Ψ‖
1
2

L2‖∆Ψ‖
1
2

L2 + ‖∇Ψ‖L2)(‖ut‖
1
2

L2‖∇ut‖
1
2

L2 + ‖ut‖L2)

≤ 1

8
‖∇ut‖2L2 + C(‖ut‖2L2 + ‖wt‖2L2);

I6 = −
∫

Ω

wt∇Ψt · udx ≤ ‖u‖L2‖wt‖L4‖∇Ψt‖L4

≤ C(‖wt‖
1
2

L2‖∇wt‖
1
2

L2 + ‖wt‖L2)(‖∇Ψt‖
1
2

L2‖∆Ψt‖
1
2

L2 + ‖∇Ψt‖L2)

≤ 1

8
‖∇wt‖2L2 +

1

8
‖∆Ψt‖2L2 + C(‖wt‖2L2 + ‖∇Ψt‖2L2);

I7 =

∫
Ω

(vt∇Ψ · ∇Ψt + v|∇Ψt|2)dx

≤ ‖∇Ψ‖L2‖vt‖L4‖∇Ψt‖L4 + ‖v‖L2‖∇Ψt‖2L4
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≤ 1

8
‖∇vt‖2L2 +

1

8
‖∆Ψt‖2L2 + C(‖vt‖2L2 + ‖∇Ψt‖2L2).

Taking all above estimates into (33), we have

d

dt
‖(ut,∇Ψt)‖2L2 +

3

2
‖(∇ut,∆Ψt)‖2L2 ≤

1

4
‖(∇vt,∇wt)‖2L2(34)

+ C‖(ut,∇Ψt, vt, wt)‖2L2 .

Adding up (32) and (34) and using the fourth equation of (30), we finally obtain

d

dt
‖(ut, vt, wt,∇Ψt)‖2L2 +‖(∇ut,∇vt,∇wt)‖2L2≤C‖(ut,∇Ψt, vt, wt)‖2L2 .(35)

Applying Gronwall’s inequality yields (29). The proof of Lemma 2.5 is achieved.
�

Based on Lemmas 2.2–2.5, one can apply the Galerkin approximation and
the Aubin–Lions compactness principle to prove that for every T > 0, there
exists a global axisymmetric strong solution (u, v, w) to the problem (8)–(10)
satisfying

(36) u ∈ C([0, T ], H1
0,σ(Ω))∩L∞(0, T ;H2(Ω)), v, w ∈ C([0, T ], H2(Ω)∩L1(Ω))

and

(37) ut, vt, wt ∈ L∞(0, T ;L2(Ω)), ∇ut,∇vt,∇wt ∈ L2(0, T ;L2(Ω)).

Finally, let us prove the uniqueness of the axisymmetric strong solutions. Let
(u1, v1, w1) and (u2, v2, w2) be two solutions of the problem (8)–(10) with the
same initial data and satisfy (36) and (37). Denoting δu = u1−u2, δv = v1−v2,
δw = w1 − w2, δP = P1 − P2, δΨ = Ψ1 −Ψ2. Then we have

(38)



(δu)t + (δu · ∇)u1+(u2 · ∇)δu−∆δu+∇δP = δw∇Ψ1 + w2∇δΨ,
∇ · δu = 0,

(δv)t + (δu · ∇)v1 + (u2 · ∇)δv = ∇ · (∇δv − δw∇Ψ1 − w2∇δΨ),

(δw)t + (δu · ∇)w1 + (u2 · ∇)δw = ∇ · (∇δw − δv∇Ψ1 − v2∇δΨ),

∆δΨ = δw

with the initial condition

(δu, δv, δw)|t=0 = (0, 0, 0)

and the boundary conditions

δu = 0,
∂(δv)

∂ν
= 0,

∂(δw)

∂ν
= 0,

∂(δΨ)

∂ν
= 0 on ∂Ω× (0, T ).

Taking the L2-inner product of the third equation of (38) with δv, the fourth
equation of (38) with δw, and adding up two resultant equalities, one has

1

2

d

dt
‖(δv, δw)‖2L2 + ‖(∇δv,∇δw)‖2L2(39)
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= −
∫

Ω

(δu · ∇)v1δv + (δu · ∇)w1δwdx

−
∫

Ω

∇ · (δw∇Ψ1)δv +∇ · (δv∇Ψ1)δwdx

−
∫

Ω

∇ · (w2∇δΨ)δv +∇ · (v2∇δΨ)δwdx

:= J1 + J2 + J3.

For Ji (i = 1, 2, 3), we can derive that

J1 ≤ C‖(v1, w1)‖L2‖δu‖L4‖(δv, δw)‖L4

≤ 1

8
‖∇δu‖2L2 +

1

8
‖(∇δv,∇δw)‖2L2 + C‖(v1, w1)‖2L2‖(δu, δv, δw)‖2L2 ;

J2 = −
∫

Ω

w1δvδwdx ≤ C‖w1‖L2‖δv‖L4‖δw‖L4

≤ 1

8
‖(∇δv,∇δw)‖2L2 + C‖w1‖2L2‖(δv, δw)‖2L2 ;

J3 ≤ C‖(v2, w2)‖L4‖∇δΨ‖L4‖(∇δv,∇δw)‖L2

≤ 1

8
‖(∇δv,∇δw)‖2L2 +

1

8
‖∆δΨ‖2L2 + C‖(v2, w2)‖2H1‖∇δΨ‖2L2 .

Taking the above estimates into (39), we get

d

dt
‖(δv, δw)‖2L2 +

5

4
‖(∇δv,∇δw)‖2L2(40)

≤ 1

4
‖∇δu‖2L2 +

1

4
‖∆δΨ‖2L2 + C‖(v1, w1, v2, w2)‖2H1‖(δu, δv, δw,∇δΨ)‖2L2 .

Notice that we can rewrite the fourth equation of (38) as

(δw)t + (u1 · ∇)δw + (δu · ∇)w2 = ∇ · (∇δw − δv∇Ψ1 − v2∇δΨ).(41)

Therefore, taking the L2-inner product to the first equations of (38) with δu,
(41) with δΨ, then adding up two resultant equalities together, and taking
account of ∆δΨ = δw, we see that

1

2

d

dt
‖(δu,∇δΨ)‖2L2 + ‖(∇δu,∆δΨ)‖2L2(42)

= −
∫
R3

(δu · ∇u1) · δudx+

∫
Ω

δw∇Ψ1δudx+

∫
Ω

∇ · (δv∇Ψ1+v2∇δΨ)δΨdx

:= J4 + J5 + J6,

where we have used the facts by consideration of integration by parts and
∆δΨ = δw: ∫

Ω

(u1 · ∇)δwδΨdx = −
∫

Ω

(u1 · ∇)
(∇δΨ)2

2
dx = 0
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and ∫
Ω

w2∇δΨ · δu+ (δu · ∇)w2δΨdx = 0.

Similarly, for Ji (i = 4, 5, 6), we obtain

J4 ≤ C‖∇u1‖L2‖δu‖2L4 ≤
1

8
‖∇δu‖2L2 + C‖∇u1‖2L2‖δu‖2L2 ;

J5 ≤ C‖∇Ψ1‖L2‖δu‖L4‖δw‖L4 ≤ 1

8
‖∇δu‖2L2 +

1

8
‖∇δw‖2L2

+ C‖∇Ψ1‖2L2‖(δu, δw)‖2L2 ;

J6 ≤ C‖(∇Ψ1, v2)‖L2‖(δv,∇δΨ)‖L4‖∇δΨ‖L4

≤ 1

8
‖∇δv‖2L2 +

1

8
‖∆δΨ‖2L2 + C‖(∇u1,∇Ψ1, v2)‖2L2‖(δv,∇δΨ)‖2L2 .

Taking all above estimates into (42) yields that

d

dt
‖(δu,∇δΨ)‖2L2 +

5

4
‖(∇δu,∆δΨ)‖2L2(43)

≤ 1

4
‖(∇δv,∇δw)‖2L2 + C‖(∇Ψ1, v2)‖2L2‖(δu, δv, δw,∇δΨ)‖2L2 .

Summing up (40) and (43), we conclude that

d

dt
‖(δu, δv, δw,∇δΨ)‖2L2 + ‖(∇δu,∇δv,∇δw)‖2L2(44)

≤ CY(t)‖(δu, δv, δw,∇δΨ)‖2L2 ,

where Y(t) is defined by

Y(t) :=

2∑
i=1

‖(ui, vi, wi,∇Ψi)‖2H1 .

Since Y(t) is integrable for the time interval [0, T ] for any 0 < T < ∞ , and

Lebesgue dominated convergence theorem ensures that
∫ t

0
Y(τ)dτ is a continu-

ous nondecreasing function which vanishes at zero. Hence, (δu, δv, δw) ≡ (0, 0)
on time interval [0, t] for small enough t. Finally, because the function t →
‖(δu, δv, δw)‖L2 is also continuous, a standard connectivity argument enables
us to conclude that (δu, δv, δw) ≡ (0, 0) on Ω × [0, T ]. We complete the proof
of Theorem 1.1.
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