• Title/Summary/Keyword: global gene regulation

Search Result 81, Processing Time 0.037 seconds

Evaluation of Potential Biomarkers for Thioacetamide-induced Hepatotoxicity using siRNA

  • Kang, Jin-Seok;Yum, Young-Na;Han, Eui-Sik;Kim, Joo-Hwan;Lee, Eun-Mi;Ryu, Doug-Young;Kim, Young-Hee;Yang, Sung-Hee;Kim, Seung-Hee;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • v.16 no.3
    • /
    • pp.197-202
    • /
    • 2008
  • In our previous publication we compared the gene expression profiles on hepatotoxicants exposure to assess the comparability between in vivo and in vitro test systems. We investigated global gene expression from both mouse liver and mouse hepatic cell line treated with thioacetamide (TAA) and identified several common genes. In this study, we selected genes to validate them as potential biomarkers for hepatotoxicity on the relevance of in vitro and in vivo system. Three up-regulated, aquaporin 8 (Aqp8), glutathione peroxidase 1 (Gpx1), succinate-CoA ligase, GDP-forming, alpha subunit (Suclg1) and two down-regulated, DnaJ (Hsp40) homolog subfamily C member 5 (Dnajc5) and tumor protein D52 (Tpd52) genes were tested for their effects in vitro. For characterization of gene function, short interfering RNA (siRNA) for each gene was synthesized and transfected in mouse hepatic cell line, BNL CL.2. Cell viability, mRNA expression level and morphological alterations were investigated. We confirmed siRNA transfection against selected five genes induced down-regulation of respective mRNA expression. siRNA transfection in general decreased cell viability in different degrees and induced morphological changes such as membrane thickening and alterations of intracellular structures. This suggests that these genes could be associated with TAA-induced toxicity. Furthermore, these genes may be used in the investigation of hepatotoxicity for better understanding of its mechanism.

Regulatory Network Analysis of MicroRNAs and Genes in Neuroblastoma

  • Wang, Li;Che, Xiang-Jiu;Wang, Ning;Li, Jie;Zhu, Ming-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7645-7652
    • /
    • 2014
  • Neuroblastoma (NB), the most common extracranial solid tumor, accounts for 10% of childhood cancer. To date, scientists have gained quite a lot of knowledge about microRNAs (miRNAs) and their genes in NB. Discovering inner regulation networks, however, still presents problems. Our study was focused on determining differentially-expressed miRNAs, their target genes and transcription factors (TFs) which exert profound influence on the pathogenesis of NB. Here we constructed three regulatory networks: differentially-expressed, related and global. We compared and analyzed the differences between the three networks to distinguish key pathways and significant nodes. Certain pathways demonstrated specific features. The differentially-expressed network consists of already identified differentially-expressed genes, miRNAs and their host genes. With this network, we can clearly see how pathways of differentially expressed genes, differentially expressed miRNAs and TFs affect on the progression of NB. MYCN, for example, which is a mutated gene of NB, is targeted by hsa-miR-29a and hsa-miR-34a, and regulates another eight differentially-expressed miRNAs that target genes VEGFA, BCL2, REL2 and so on. Further related genes and miRNAs were obtained to construct the related network and it was observed that a miRNA and its target gene exhibit special features. Hsa-miR-34a, for example, targets gene MYC, which regulates hsa-miR-34a in turn. This forms a self-adaption association. TFs like MYC and PTEN having six types of adjacent nodes and other classes of TFs investigated really can help to demonstrate that TFs affect pathways through expressions of significant miRNAs involved in the pathogenesis of NB. The present study providing comprehensive data partially reveals the mechanism of NB and should facilitate future studies to gain more significant and related data results for NB.

Global Transcriptome-Wide Association Studies (TWAS) Reveal a Gene Regulation Network of Eating and Cooking Quality Traits in Rice

  • Weiguo Zhao;Qiang He;Kyu-Won Kim;Feifei Xu;Thant Zin Maung;Aueangporn Somsri;Min-Young Yoon;Sang-Beom Lee;Seung-Hyun Kim;Joohyun Lee;Soon-Wook Kwon;Gang-Seob Lee;Bhagwat Nawade;Sang-Ho Chu;Wondo Lee;Yoo-Hyun Cho;Chang-Yong Lee;Ill-Min Chung;Jong-Seong Jeon;Yong-Jin Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.207-207
    • /
    • 2022
  • Eating and cooking quality (ECQ) is one of the most complex quantitative traits in rice. The understanding of genetic regulation of transcript expression levels attributing to phenotypic variation in ECQ traits is limited. We integrated whole-genome resequencing, transcriptome, and phenotypic variation data from 84 Japonica accessions to build a transcriptome-wide association study (TWAS) based regulatory network. All ECQ traits showed a large phenotypic variation and significant phenotypic correlations among the traits. TWAS analysis identified a total of 285 transcripts significantly associated with six ECQ traits. Genome-wide mapping of ECQ-associated transcripts revealed 66,905 quantitative expression traits (eQTLs), including 21,747 local eQTLs, and 45,158 trans-eQTLs, regulating the expression of 43 genes. The starch synthesis-related genes (SSRGs), starch synthase IV-1 (SSIV-1), starch branching enzyme 1 (SBE1), granule-bound starch synthase 2 (GBSS2), and ADP-glucose pyrophosphorylase small subunit 2a (OsAGPS2a) were found to have eQTLs regulating the expression of ECQ associated transcripts. Further, in co-expression analysis, 130 genes produced at least one network with 22 master regulators. In addition, we developed CRISPR/Cas9-edited glbl mutant lines that confirmed the role of alpha-globulin (glbl) in starch synthesis to validate the co-expression analysis. This study provided novel insights into the genetic regulation of ECQ traits, and transcripts associated with these traits were discovered that could be used in further rice breeding.

  • PDF

Histone H3K4 Methyltransferase SET1A Stimulates the Adipogenesis of 3T3-L1 Preadipocytes (히스톤 H3K4 메칠화효소 SET1A에 의한 지방세포 분화 촉진)

  • Kim, Seon Hoo;Jung, Myeong Ho
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1104-1110
    • /
    • 2017
  • SET1A is a histone H3K4 methyltransferase that catalyzes di- and trimethylation of histone H3 at lysine 4 (H3K4). Mono-, di-, and trimethylations on H3K4 (H3K4me1, H3K4me2, and H3K4me3, respectively) are generally correlated with gene activation. Although H3K4 methylation is associated with the stimulation of adipogenesis of 3T3-L1 preadipocytes, it remains unknown whether SET1A plays a role in the regulation of adipogenesis of 3T3-L1 preadipocytes. Here, we investigated whether SET1A regulates 3T3-L1 preadipocytes' adipogenesis and characterized the mechanism involved in this regulation. SET1A expression increased during 3T3-L1 preadipocytes' adipogenesis. Consistent with the increased SET1A expression, the global H3K4me3 level had also increased on day 2 after the induction of adipogenesis in 3T3-L1 adipocytes. SET1A knockdown using siRNA in 3T3-L1 preadipocytes inhibited 3T3-L1 preadipocytes' adipogenesis, as assessed by Oil Red O staining and the expression of adipogenic genes, indicating that SET1A stimulates the adipogenesis of 3T3-L1 preadipocytes. SET1A knockdown inhibited the cell proliferation of 3T3-L1 cells during mitotic clonal expansion (MCE) via down-regulation of the cell cycle gene cyclin E1, as well as the DNA synthesis gene, dihydrofolate reductase. Furthermore, SET1A knockdown repressed peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) expression during the late stage of adipogenesis. These results indicate that SET1A stimulates MCE and $PPAR{\gamma}$ expression, which leads to the promotion of 3T3-L1 preadipocytes' adipogenesis.

Functional Expression of Proteomics-guided AfsR2-dependent Genes in Avermectin-producing Streptomyces avermitilis (Avermectin을 생산하는 Streptomyces avermitilis에서의 Proteomics-guided AfsR2-dependent 유전자의 발현)

  • Kim Myung-Gun;Park Hyun-Joo;Im Jong-Hyuk;Kim Eung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.211-215
    • /
    • 2006
  • AfsR2 is a global regulatory protein involved in the stimulation of secondary metabolite biosynthesis in various Streptomyces species including avermectin-producing S. avermitilis. Among several AfsR2-dependent genes identified from the comparative proteomics, the polyribonucleotide nucleotidyltransferase (PNP) and the glyceraldehyde-3-phosphate dehydrogenase (GPD) genes were previously proposed to regulate the actinorhodin production in S. lividans upon afsR2 over-expression positively and negatively, respectively. To show the biological significance of the PNP and GPD genes in the S. avermitilis strains, these two genes were functionally expressed in both the wild-type and the avermectin-overproducing mutant strains. The PNP gene expression stimulated secondary metabolite production in the wild-type S. avermitilis ATCC31267, but not in the avermectin-overproducing S. avermitilis ATCC31780. Interestingly, the GDP gene expression stimulated secondary metabolite production by 4-fold in the wild-type S. avermitilis ATCC31267 and by 2.5-fold in the avermectin-overproducing S. avermitilis ATCC31780, respectively. These results suggest that the biological significance of the afsR2-dependent PNP and GPD gene expressions on antibiotic biosynthetic regulation could be significantly different depending on Streptomyces species.

Genetic Control of Asexual Sporulation in Fusarium graminearum

  • Son, Hokyoung;Kim, Myung-Gu;Chae, Suhn-Kee;Lee, Yin-Won
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.15-15
    • /
    • 2014
  • Fusarium graminearum (teleomorph Gibberella zeae) is an important plant pathogen that causes head blight of major cereal crops such as wheat, barley, and rice, as well as causing ear and stalk rot on maize worldwide. Plant diseases caused by this fungus lead to severe yield losses and accumulation of harmful mycotoxins in infected cereals [1]. Fungi utilize spore production as a mean to rapidly avoid unfavorable environmental conditions and to amplify their population. Spores are produced sexually and asexually and their production is precisely controlled. Upstream developmental activators consist of fluffy genes have been known to orchestrate early induction of condiogenesis in a model filamentous fungus Aspergillus nidulans. To understand the molecular mechanisms underlying conidiogenesis in F. graminearum, we characterized functions of the F. graminearum fluffy gene homologs [2]. We found that FlbD is conserved regulatory function for conidiogenesis in both A. nidulans and F. graminearum among five fluffy gene homologs. flbD deletion abolished conidia and perithecia production, suggesting that FlbD have global roles in hyphal differentiation processes in F. graminearum. We further identified and functionally characterized the ortholog of AbaA, which is involved in differentiation from vegetative hyphae to conidia and known to be absent in F. graminearum [3]. Deletion of abaA did not affect vegetative growth, sexual development, or virulence, but conidium production was completely abolished and thin hyphae grew from abnormally shaped phialides in abaA deletion mutants. Overexpression of abaA resulted in pleiotropic defects such as impaired sexual and asexual development, retarded conidium germination, and reduced trichothecene production. AbaA localized to the nuclei of phialides and terminal cells of mature conidia. Successful interspecies complementation using A. nidulans AbaA and the conserved AbaA-WetA pathway demonstrated that the molecular mechanisms responsible for AbaA activity are conserved in F. graminearum as they are in A. nidulans. F. graminearum ortholog of Aspergillus nidulans wetA has been shown to be involved in conidiogenesis and conidium maturation [4]. Deletion of F. graminearum wetA did not alter mycelial growth, sexual development, or virulence, but the wetA deletion mutants produced longer conidia with fewer septa, and the conidia were sensitive to acute stresses, such as oxidative stress and heat stress. Furthermore, the survival rate of aged conidia from the F. graminearum wetA deletion mutants was reduced. The wetA deletion resulted in vigorous generation of single-celled conidia through autophagy-dependent microcycle conidiation, indicating that WetA functions to maintain conidia dormancy by suppressing microcycle conidiation in F. graminearum. In A. nidulans, FlbB physically interacts with FlbD and FlbE, and the resulting FlbB/FlbE and FlbB/FlbD complexes induce the expression of flbD and brlA, respectively. BrlA is an activator of the AbaA-WetA pathway. AbaA and WetA are required for phialide formation and conidia maturation, respectively [5]. In F. graminearum, the AbaA-WetA pathway is similar to that of A. nidulans, except a brlA ortholog does not exist. Amongst the fluffy genes, only fgflbD has a conserved role for regulation of the AbaA-WetA pathway.

  • PDF

Fecal Microbiota Transplantation (FMT) Alleviates Experimental Colitis in Mice by Gut Microbiota Regulation

  • Zhang, Wanying;Zou, Guiling;Li, Bin;Du, Xuefei;Sun, Zhe;Sun, Yu;Jiang, Xiaofeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1132-1141
    • /
    • 2020
  • Inflammatory bowel disease (IBD) is an increasing global burden and a predisposing factor to colorectal cancer. Although a number of treatment options are available, the side effects could be considerable. Studies on fecal microbiota transplantation (FMT) as an IBD intervention protocol require further validation as the underlying mechanisms for its attenuating effects remain unclear. This study aims to demonstrate the ameliorative role of FMT in an ulcerative colitis (UC) model induced by dextran sulfate sodium (DSS) and elucidate its relative mechanisms in a mouse model. It was shown that FMT intervention decreased disease activity index (DAI) levels and increased the body weight, colon weight and colon length of experimental animals. It also alleviated histopathological changes, reduced key cytokine expression and oxidative status in the colon. A down-regulated expression level of genes associated with NF-κB signaling pathway was also observed. The results of 16S rRNA gene sequencing showed that FMT intervention restored the gut microbiota to the pattern of the control group by increasing the relative abundance of Firmicutes and decreasing the abundances of Bacteroidetes and Proteobacteria. The relative abundances of the genera Lactobacillus, Butyricicoccus, Lachnoclostridium, Olsenella and Odoribacter were upregulated but Helicobacter, Bacteroides and Clostridium were reduced after FMT administration. Furthermore, FMT administration elevated the concentrations of SCFAs in the colon. In conclusion, FMT intervention could be suitable for UC control, but further validations via clinical trials are recommended.

Inhibitory Effect of Ginseng on Breast Cancer Cell Line Growth Via Up-Regulation of Cyclin Dependent Kinase Inhibitor, p21 and p53

  • Shabanah, Othman A AL;Alotaibi, Moureq R;Rejaie, Salim S Al;Alhoshani, Ali R;Almutairi, Mashal M;Alshammari, Musaad A;Hafez, Mohamed M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4965-4971
    • /
    • 2016
  • Objective: Breast cancer is global female health problem worldwide. Most of the currently used agents for breast cancer treatment have toxic side-effects. Ginseng root, an oriental medicine, has many health benefits and may exhibit direct anti-cancer properties. This study was performed to assess the effects of ginseng on breast cancer cell lines. Materials and Methods: Cytotoxicity of ginseng extract was measured by MTT assay after exposure of MDA-MB-231, MCF-10A and MCF-7 breast cancer cells to concentrations of 0.25, 0.5, 1, 1.5, 2 and 2.5 mg/well. Expression levels of p21WAF, p16INK4A, Bcl-2, Bax and P53 genes were analyzed by quantitative real time PCR. Results: The treatment resulted in inhibition of cell proliferation in a dose-and time-dependent manner. p53, p21WAF1and p16INK4A expression levels were up-regulated in ginseng treated MDA-MB-231 and MCF-7 cancer cells compared to untreated controls and in MCF-10A cells. The expression levels of Bcl2 in the MDA-MB-231 and MCF-7 cells were down-regulated. In contrast, that of Bax was significantly up-regulated. Conclusion: The results of this study revealed that ginseng may inhibit breast cancer cell growth by activation of the apoptotic pathway.

Identification and Functional Analysis of RelA/SpoT Homolog (RSH) Genes in Deinococcus radiodurans

  • Wang, Jinhui;Tian, Ye;Zhou, Zhengfu;Zhang, Liwen;Zhang, Wei;Lin, Min;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2106-2115
    • /
    • 2016
  • To identify the global effects of (p)ppGpp in the gram-positive bacterium Deinococcus radiodurans, which exhibits remarkable resistance to radiation and other stresses, RelA/SpoT homolog (RSHs) mutants were constructed by direct deletion mutagenesis. The results showed that RelA has both synthesis and hydrolysis domains of (p)ppGpp, whereas RelQ only synthesizes (p)ppGpp in D. radiodurans. The growth assay for mutants and complementation analysis revealed that deletion of relA and relQ sensitized the cells to $H_2O_2$, heat shock, and amino acid limitation. Comparative proteomic analysis revealed that the bifunctional RelA is involved in DNA repair, molecular chaperone functions, transcription, the tricarboxylic acid cycle, and metabolism, suggesting that relA maintains the cellular (p)ppGpp levels and plays a crucial role in oxidative resistance in D. radiodurans. The D. radiodurans relA and relQ genes are responsible for (p)ppGpp synthesis/hydrolysis and (p)ppGpp hydrolysis, respectively. (p)ppGpp integrates a general stress response with a targeted re-programming of gene regulation to allow bacteria to respond appropriately towards heat shock, oxidative stress, and starvation. This is the first identification of RelA and RelQ involvement in response to oxidative, heat shock, and starvation stresses in D. radiodurans, which further elucidates the remarkable resistance of this bacterium to stresses.

Protein Expression of Mouse Uterus in Post-Implantation

  • Kim, Hong-Rye;Han, Rong-Xun;Kim, Myung-Youn;Diao, Yunfei;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.33 no.4
    • /
    • pp.237-242
    • /
    • 2009
  • Pregnancy is a unique event in which a fetus develops in the uterus despite being genetically and immunologically different from the mother, and the underlying mechanisms remain poorly understood. To analyze the differential gene expression profiles in nonpregnant and 7 days post coitus (dpc) pregnant uterus of mice, we performed a global proteomic study by 2-D gel electrophoresis (2-DE) and MALDI-TOF-MS. The uterine proteins were separated using 2-DE, Approximately 1,000 spots were detected on staining with Coomassie brilliant blue. An image analysis using Melanie III (Swiss Institute for Bioinformatics) was performed to detect variations in protein spots between pregnant and nonpregnant uterus. Twenty-one spots were identified as differentially expressed proteins, of which 10 were up-regulated proteins such as alpha-fetoprotein, chloride intracellular channel 1, transgelin, heat-shock protein beta-1, and carbonic anhydrase II, while 11 were down-regulated proteins such as X-box binding protein, glutathione S-transferase omega 1, olfactory receptor Olfr204, and metalloproteinase-disintegrin domain containing protein TECADAM. Most of the identified proteins appeared to be related with catabolism, cell growth, metabolism, regulation, cell protection, protein repair, or protection. Our results uncovered key proteins of mouse uterus involved in pregnancy.