Browse > Article
http://dx.doi.org/10.4014/jmb.2002.02044

Fecal Microbiota Transplantation (FMT) Alleviates Experimental Colitis in Mice by Gut Microbiota Regulation  

Zhang, Wanying (Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University)
Zou, Guiling (Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University)
Li, Bin (Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University)
Du, Xuefei (Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University)
Sun, Zhe (Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University)
Sun, Yu (Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University)
Jiang, Xiaofeng (Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.8, 2020 , pp. 1132-1141 More about this Journal
Abstract
Inflammatory bowel disease (IBD) is an increasing global burden and a predisposing factor to colorectal cancer. Although a number of treatment options are available, the side effects could be considerable. Studies on fecal microbiota transplantation (FMT) as an IBD intervention protocol require further validation as the underlying mechanisms for its attenuating effects remain unclear. This study aims to demonstrate the ameliorative role of FMT in an ulcerative colitis (UC) model induced by dextran sulfate sodium (DSS) and elucidate its relative mechanisms in a mouse model. It was shown that FMT intervention decreased disease activity index (DAI) levels and increased the body weight, colon weight and colon length of experimental animals. It also alleviated histopathological changes, reduced key cytokine expression and oxidative status in the colon. A down-regulated expression level of genes associated with NF-κB signaling pathway was also observed. The results of 16S rRNA gene sequencing showed that FMT intervention restored the gut microbiota to the pattern of the control group by increasing the relative abundance of Firmicutes and decreasing the abundances of Bacteroidetes and Proteobacteria. The relative abundances of the genera Lactobacillus, Butyricicoccus, Lachnoclostridium, Olsenella and Odoribacter were upregulated but Helicobacter, Bacteroides and Clostridium were reduced after FMT administration. Furthermore, FMT administration elevated the concentrations of SCFAs in the colon. In conclusion, FMT intervention could be suitable for UC control, but further validations via clinical trials are recommended.
Keywords
Ulcerative colitis (UC); fcal microbiota transplantation (FMT); gut microbiota; $NF-{\kappa}B$ signaling pathway;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sun MC, Zhang FC, Yin X, Cheng BJ, Zhao CH, Wang YL, et al. 2018. Lactobacillus reuteri F-9-35 prevents DSS-Induced colitis by inhibiting proinflammatory gene expression and restoring the gut microbiota in mice. J. Food Sci. 83: 2645-2652.   DOI
2 Aderem A, Ulevitch RJ. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406: 782-787.   DOI
3 Lamping N, Dettmer R, Schr-Der NW, Pfeil D, Hallatschek W, Burger R, et al. 1998. LPS-binding protein protects mice from septic shock caused by LPS or gram-negative bacteria. J. Clin. Invest. 101: 2065-2071.   DOI
4 Zhang F, Li Y, Wang X, Wang S, Bi D. 2019. The Impact of Lactobacillus plantarum on the gut microbiota of mice with DSS-Induced colitis. Biomed Res. Int. 2019: 3921315.   DOI
5 Shaukat A, Virnig DJ, Salfiti NI, Howard DH, Sitaraman SV, Liff JM. 2011. Is inflammatory bowel disease an important risk factor among older persons with colorectal cancer in the United States? A population-based case-control study. Dig. Dis. Sci. 56: 2378.   DOI
6 Chang M, Chang L, Chang HM, Chang F. 2018. Intestinal and extraintestinal cancers associated with inflammatory bowel disease. Clin. Colorectal Cancer 17: e29-e37.   DOI
7 Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. 2017. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390: 2769-2778.   DOI
8 Monteleone I, Vavassori P, Biancone L, Monteleone G, Pallone F. 2002. Immunoregulation in the gut: success and failures in human disease. Gut 50: iii60-iii64.   DOI
9 Castro-Dopico T, Clatworthy MR. 2019. IgG and $Fc{\gamma}$ receptors in intestinal immunity and inflammation. Front. Immunol. 10: 805.   DOI
10 Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. 2018. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9: 7204-7218.   DOI
11 Sun Y, Zhao Y, Yao J, Zhao L, Wu Z, Wang Y, et al. 2015. Wogonoside protects against dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-${\kappa}B$ and NLRP3 inflammasome activation. Biochem. Pharmacol. 94: 142-154.   DOI
12 Ghosh S. 2004. Signaling to NF-${\kappa}B$. Genes Dev. 18: 2195-2224.   DOI
13 Zhang S-L, Wang S-N, Miao C-Y. 2017. Influence of microbiota on intestinal immune system in ulcerative colitis and its intervention. Front. Immunol. 8: 1674.   DOI
14 Imhann F, Vila AV, Bonder MJ, Fu J, Gevers D, Visschedijk MC, et al. 2018. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 67: 108-119.   DOI
15 Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W, Ren B, et al. 2014. The treatment-naive microbiome in newonset Crohn's disease. Cell Host Microbe 15: 382-392.   DOI
16 Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, et al. 2014. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158: 1000-1010.   DOI
17 Di Lorenzo F, De Castro C, Silipo A, Molinaro A. 2019. Lipopolysaccharide structures of Gram-negative populations in the gut microbiota and effects on host interactions. FEMS Microbiol. Rev. 43: 257-272.   DOI
18 Rogler G, Brand K, Vogl D, Page S, Hofmeister R, Andus T, et al. 1998. Nuclear factor ${\kappa}B$ is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology 115: 357-369.   DOI
19 Forbes JD, Van Domselaar G, Bernstein CN. 2016. The gut microbiota in immune-mediated inflammatory diseases. Front. Microbiol. 7: 1081.
20 Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al. 2019. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4: 293-305.   DOI
21 Schreiber S, Nikolaus S, Hampe J. 1998. Activation of nuclear factor ${\kappa}B$ in inflammatory bowel disease. Gut 42: 477-484.   DOI
22 Sartor RB. 2008. Microbial influences in inflammatory bowel diseases. Gastroenterology 134: 577-594.   DOI
23 Clemente JC, Manasson J, Scher JU. 2018. The role of the gut microbiome in systemic inflammatory disease. BMJ. 360: j5145.   DOI
24 Wang Z-K, Yang Y-S, Chen Y, Yuan J, Sun G, Peng L-H. 2014. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease. World J. Gastroenterol. 20: 14805-14820.   DOI
25 Kang D-W, Adams JB, Gregory AC, Borody T, Chittick L, Fasano A, et al. 2017. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5: 10.   DOI
26 Kaur R, Thakur S, Rastogi P, Kaushal N. 2018. Resolution of Cox mediated inflammation by Se supplementation in mouse experimental model of colitis. PLoS One. 13: e0201356.   DOI
27 Zhou D, Pan Q, Shen F, Cao H-x, Ding W-j, Chen Y-w, et al. 2017. Total fecal microbiota transplantation alleviates high-fat dietinduced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci. Rep. 7: 1-11.   DOI
28 Thorburn AN, Macia L, Mackay CR. 2014. Diet, metabolites, and "western-lifestyle" inflammatory diseases. Immunity 40: 833-842.   DOI
29 Borody TJ, Campbell J. 2012. Fecal microbiota transplantation: techniques, applications, and issues. Gastroenterol. Clin. North Am. 41: 781-803.   DOI
30 De Groot P, Frissen M, De Clercq N, Nieuwdorp M. 2017. Fecal microbiota transplantation in metabolic syndrome: history, present and future. Gut Microbes 8: 253-267.   DOI
31 Donia MS, Fischbach MA. 2015. Small molecules from the human microbiota. Science 349: 1254766.   DOI
32 Canani RB, Sangwan N, Stefka AT, Nocerino R, Paparo L, Aitoro R, et al. 2016. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. ISME J. 10: 742-750.   DOI
33 Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500: 541-546.   DOI
34 Reichardt N, Duncan SH, Young P, Belenguer A, Leitch CM, Scott KP, et al. 2014. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 8: 1323-1335.   DOI
35 Louis P, Flint HJ. 2009. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 294: 1-8.   DOI
36 Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200.   DOI
37 Camuesco D, Comalada M, Rodriguez-Cabezas ME, Nieto A, Lorente MD, Concha A, et al. 2004. The intestinal anti-inflammatory effect of quercitrin is associated with an inhibition in iNOS expression. Br. J. Pharmacol. 143: 908-918.   DOI
38 Murthy S, Cooper HS, Shim H, Shah RS, Ibrahim SA, Sedergran DJ. 1993. Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin. Dig. Dis. Sci. 38: 1722-1734.   DOI
39 Viennois E, Chen F, Laroui H, Baker MT, Merlin D. 2013. Dextran sodium sulfate inhibits the activities of both polymerase and reverse transcriptase: lithium chloride purification, a rapid and efficient technique to purify RNA. BMC Res. Notes 6: 360.   DOI
40 Magoc T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27: 2957-2963.   DOI
41 Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10: 996-998.   DOI
42 Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of highthroughput community sequencing data. Nat. Methods 7: 335-336.   DOI
43 Li B, Smith EE, Lu J, Jiao Y, Huo G. 2018. Lactobacillus helveticus KLDS1.8701 alleviates D-galactose-induced aging by regulating of Nrf-2 and gut microbiota in mice. Food Funct. 9: 6586-6598.   DOI
44 Li B, Evivie SE, Lu J, Jiao Y, Wang C, Li Z, et al. 2018. Lactobacillus helveticus KLDS1. 8701 alleviates D-galactose-induced aging by regulating Nrf-2 and gut microbiota in mice. Food Funct. 9: 6586-6598.   DOI
45 Vital M, Howe AC, Tiedje JM. 2014. Revealing the bacterial butyrate synthesis pathways by analyzing (meta) genomic data. MBio. 5: e00889-00814.
46 Wongkuna S, Ghimire S, Kumar R, Antony L, Chankhamhaengdecha S, Janvilisri T, et al. 2019. Olsenella lakotia SW165 sp. nov., an acetate producing obligate anaerobe with a GC rich genome. BioRxiv. 670927.
47 Granado-Serrano AB, Martin-Gari M, Sanchez V, Solans MR, Berdun R, Ludwig IA, et al. 2019. Faecal bacterial and short-chain fatty acids signature in hypercholesterolemia. Sci. Rep. 9: 1-13.   DOI
48 Dong W, Jia Y, Liu X, Zhang H, Li T, Huang W, et al. 2017. Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC. J. Endocrinol. 232: 71-83.   DOI
49 Venegas DP, Marjorie K, Landskron G, Gonzalez MJ, Quera R, Dijkstra G, et al. 2019. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10: 277.   DOI
50 Saeki Y, Ishiyama K, Ishida N, Tanaka Y, Ohdan H. 2019. Memory-like liver natural killer cells are responsible for islet destruction in secondary islet transplantation. Sci. Rep. 9: 1-14.   DOI
51 Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, et al. 2015. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17: 662-671.   DOI
52 Makarov SS. 2000. NF-${\kappa}B$ as a therapeutic target in chronic inflammation: recent advances. Mol. Med. Today 6: 441-448.   DOI
53 Perse M, Cerar A. 2012. Dextran sodium sulphate colitis mouse model: traps and tricks. J. Biomed. Biotechnol. 2012: 718617.
54 Johansson ME. 2014. Mucus layers in inflammatory bowel disease. Inflamm. Bowel Dis. 20: 2124-2131.   DOI
55 Zhang Z, Shen P, Liu J, Gu C, Lu X, Li Y, et al. 2017. In vivo study of the efficacy of the essential oil of Zanthoxylum bungeanum pericarp in dextran sulfate sodium-induced murine experimental colitis. J. Agric. Food Chem. 65: 3311-3319.   DOI
56 Riviere A, Selak M, Lantin D, Leroy F, De Vuyst L. 2016. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7: 979.
57 Tedelind S, Westberg F, Kjerrulf M, Vidal A. 2007. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J. Gastroenterol. 13: 2826.   DOI
58 Zhao G, Jiang K, Wu H, Qiu C, Deng G, Peng X. 2017. Polydatin reduces Staphylococcus aureus lipoteichoic acid-induced injury by attenuating reactive oxygen species generation and TLR 2-NF ${\kappa}B$ signalling. J. Cell. Mol. Med. 21: 2796-2808.   DOI
59 Zhao G, Zhang T, Ma X, Jiang K, Wu H, Qiu C, et al. 2017. Oridonin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-induced RAW264. 7 cells and acute lung injury. Oncotarget 8: 68153.   DOI
60 Tak PP, Firestein GS. 2001. NF-${\kappa}B$: a key role in inflammatory diseases. J. Clin. Invest. 107: 7-11.   DOI
61 Li B, Alli R, Vogel P, Geiger TL. 2014. IL-10 modulates DSS-induced colitis through a macrophage-ROS-NO axis. Mucosal Immunol. 7: 869-878.   DOI
62 Sun Mc, Zhang Fc, Yin X, Cheng Bj, Zhao Ch, Wang Yl, et al. 2018. Lactobacillus reuteri F-9-35 prevents DSS-Induced colitis by inhibiting proinflammatory gene expression and restoring the gut microbiota in mice. J. Food Sci. 83: 2645-2652.   DOI
63 Burrello C, Garavaglia F, Cribiu FM, Ercoli G, Lopez G, Troisi J, et al. 2018. Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells. Nat. Commun. 9: 5184.   DOI
64 Tian Z, Liu J, Liao M, Li W, Zou J, Han X, et al. 2016. Beneficial effects of fecal microbiota transplantation on ulcerative colitis in mice. Dig. Dis. Sci. 61: 2262-2271.   DOI
65 Wright EK, Kamm MA, Teo SM, Inouye M, Wagner J, Kirkwood CD. 2015. Recent advances in characterizing the gastrointestinal microbiome in Crohn's disease: a systematic review. Inflamm. Bowel Dis. 21: 1219-1228.   DOI
66 Garside P. 1999. Cytokines in experimental colitis. Clin. Exp. Immunol. 118: 337-339.   DOI
67 Anhe FF, Roy D, Pilon G, Dudonne S, Matamoros S, Varin TV, et al. 2015. A polyphenol-rich cranberry extract protects from dietinduced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64: 872-883.   DOI
68 Peng X, Kong B, Yu H, Diao X. 2014. Protective effect of whey protein hydrolysates against oxidative stress in D-galactose-induced ageing rats. Int. Dairy J. 34: 80-85.   DOI
69 Li S, Zhao Y, Zhang L, Zhang X, Huang L, Li D, et al. 2012. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem. 135: 1914-1919.   DOI
70 Zhu J, Mu X, Zeng J, Xu C, Liu J, Zhang M, et al. 2014. Ginsenoside Rg1 prevents cognitive impairment and hippocampus senescence in a rat model of D-galactose-induced aging. PLoS One. 9: e101291.   DOI
71 Wang K, Jin X, Li Q, Sawaya ACHF, Le Leu RK, Conlon MA, et al. 2018. Propolis from different geographic origins decreases intestinal inflammation and Bacteroides spp. populations in a model of DSS-Induced colitis. Mol. Nutr. Food Res. 62: 1800080.   DOI
72 Alex P, Zachos NC, Nguyen T, Gonzales L, Chen T-E, Conklin LS, et al. 2008. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm. Bowel Dis. 15: 341-352.   DOI
73 Boussenna A, Goncalves-Mendes N, Joubert-Zakeyh J, Pereira B, Fraisse D, Vasson M-P, et al. 2015. Impact of basal diet on dextran sodium sulphate (DSS)-induced colitis in rats. Eur. J. Nutr. 54: 1217-1227.   DOI
74 Garcia-Mantrana I, Selma-Royo M, Alcantara Baena C, Collado MC. 2018. Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population. Front. Microbiol. 9: 890.   DOI
75 Bischoff S, Lorentz A, Schwengberg S, Weier G, Raab R, Manns M. 1999. Mast cells are an important cellular source of tumour necrosis factor $\alpha$ in human intestinal tissue. Gut 44: 643-652.   DOI
76 Sommer J, Engelowski E, Baran P, Garbers C, Floss DM, Scheller J. 2014. Interleukin-6, but not the interleukin-6 receptor plays a role in recovery from dextran sodium sulfate-induced colitis. Int. J. Mol. Med. 34: 651-660.   DOI
77 Vemuri R, Gundamaraju R, Shinde T, Eri R. 2017. Therapeutic interventions for gut dysbiosis and related disorders in the elderly: antibiotics, probiotics or faecal microbiota transplantation? Benef. Microbes 8: 179-192.   DOI