• Title/Summary/Keyword: global circulation

Search Result 248, Processing Time 0.026 seconds

Analysis of Precipitation Characteristics of Regional Climate Model for Climate Change Impacts on Water Resources (기후변화에 따른 수자원 영향 평가를 위한 Regional Climate Model 강수 계열의 특성 분석)

  • Kwon, Hyun-Han;Kim, Byung-Sik;Kim, Bo-Kyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.525-533
    • /
    • 2008
  • Global circulation models (GCMs) have been used to study impact of climate change on water resources for hydrologic models as inputs. Recently, regional circulation models (RCMs) have been used widely for climate change study, but the RCMs have been rarely used in the climate change impacts on water resources in Korea. Therefore, this study is intended to use a set of climate scenarios derived by RegCM3 RCM ($27km{\times}27km$), which is operated by Korea Meteorological Administration. To begin with, the RCM precipitation data surrounding major rainfall stations are extracted to assess validation of the scenarios in terms of reproducing low frequency behavior. A comprehensive comparison between observation and precipitation scenario is performed through statistical analysis, wavelet transform analysis and EOF analysis. Overall analysis confirmed that the precipitation data driven by RegCM3 shows capabilities in simulating hydrological low frequency behavior and reproducing spatio-temporal patterns. However, it is found that spatio-temporal patterns are slightly biased and amplitudes (variances) from the RCMs precipitation tend to be lower than the observations. Therefore, a bias correction scheme to correct the systematic bias needs to be considered in case the RCMs are applied to water resources assessment under climate change.

Precision Evaluation of Recent Global Geopotential Models based on GNSS/Leveling Data on Unified Control Points

  • Lee, Jisun;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.153-163
    • /
    • 2020
  • After launching the GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) which obtains high-frequency gravity signal using a gravity gradiometer, many research institutes are concentrating on the development of GGM (Global Geopotential Model) based on GOCE data and evaluating its precision. The precision of some GGMs was also evaluated in Korea. However, some studies dealt with GGMs constructed based on initial GOCE data or others applied a part of GNSS (Global Navigation Satellite System) / Leveling data on UCPs (Unified Control Points) for the precision evaluation. Now, GGMs which have a higher degree than EGM2008 (Earth Gravitational Model 2008) are available and UCPs were fully established at the end of 2019. Thus, EIGEN-6C4 (European Improved Gravity Field of the Earth by New techniques - 6C4), GECO (GOCE and EGM2008 Combined model), XGM2016 (Experimental Gravity Field Model 2016), SGG-UGM-1, XGM2019e_2159 were collected with EGM2008, and their precisions were assessed based on the GNSS/Leveling data on UCPs. Among GGMs, it was found that XGM2019e_2159 showed the minimum difference compared to a total of 5,313 points of GNSS/Leveling data. It is about a 1.5cm and 0.6cm level of improvement compare to EGM2008 and EIGEN-6C4. Especially, the local biases in the northern part of Gyeonggi-do, Jeju island shown in the EGM2008 was removed, so that both mean and standard deviation of the difference of XGM2019e_2159 to the GNSS/Leveling are homogeneous regardless of region (mountainous or plain area). NGA (National Geospatial-Intelligence Agency) is currently in progress in developing EGM2020 and XGM2019e_2159 is the experimentally published model of EGM2020. Therefore, it is expected that the improved GGM will be available shortly so that it is necessary to verify the precision of new GGMs consistently.

Sea Ice Extents and global warming in Okhotsk Sea and surrounding Ocean - sea ice concentration using airborne microwave radiometer -

  • Nishio, Fumihiko
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.76-82
    • /
    • 1998
  • Increase of greenhouse gas due to $CO_2$ and CH$_4$ gases would cause the global warming in the atmosphere. According to the global circulation model, it is pointed out in the Okhotsk Sea that the large increase of atmospheric temperature might be occurredin this region by global warming due to the doubling of greenhouse effectgases. Therefore, it is very important to monitor the sea ice extents in the Okhotsk Sea. To improve the sea ice extents and concentration with more highly accuracy, the field experiments have begun to comparewith Airborne Microwave Radiometer (AMR) and video images installed on the aircraft (Beach-200). The sea ice concentration is generally proportional to the brightness temperature and accurate retrieval of sea ice concentration from the brightness temperature is important because of the sensitivity of multi-channel data with the amount of open water in the sea ice pack. During the field experiments of airborned AMR the multi-frequency data suggest that the sea ice concentration is slightly dependending on the sea ice types since the brightness temperature is different between the thin and small piece of sea ice floes, and a large ice flow with different surface signatures. On the basis of classification of two sea ice types, it is cleary distinguished between the thin ice and the large ice floe in the scatter plot of 36.5 and 89.0GHz, but it does not become to make clear of the scatter plot of 18.7 and 36.5GHz Two algorithms that have been used for deriving sea ice concentrations from airbomed multi-channel data are compared. One is the NASA Team Algorithm and the other is the Bootstrap Algorithm. Intrercomparison on both algorithms with the airborned data and sea ice concentration derived from video images bas shown that the Bootstrap Algorithm is more consistent with the binary maps of video images.

  • PDF

Dual Mode Feedback-Controlled Cycling System for Upper Limb Rehabilitation of Children with Cerebral Palsy

  • Cho, Seung-Yeon;Kim, Jihun;Seo, Seong-Won;Kim, Sung-Gyung;Kim, Jaehyo
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.231-236
    • /
    • 2019
  • Background/Objectives: This paper proposes a dual mode feedback-controlled cycling system for children with spastic cerebral palsy to rehabilitate upper extremities. Repetitive upper limb exercise in this therapy aims to both reduce and analyze the abnormal torque patterns of arm movements in three- dimensional space. Methods/Statistical analysis: We designed an exercycle robot which consists of a BLDC motor, a torque sensor, a bevel gear and bearings. Mechanical structures are customized for children of age between 7~13 years old and induces reaching and pulling task in a symmetric circulation. The shafts and external frames were designed and printed using 3D printer. While the child performs active/passive exercise, angular position, angular velocity, and relative torque of the pedal shaft are measured and displayed in real time. Findings: Experiment was designed to observe the features of a cerebral palsy child's exercise. Two children with bilateral spastic cerebral palsy participated in the experiment and conducted an active exercise at normal speed for 3 sets, 15 seconds for each. As the pedal reached 90 degrees and 270 degrees, the subject showed minimum torque, in which the child showed difficulty in the pulling task of the cycle. The passive exercise assisted the child to maintain a relatively constant torque while visually observing the movement patterns. Using two types of exercise enabled the child to overcome the abnormal torque measured in the active data by performing the passive exercise. Thus, this system has advantage not only in allowing the child to perform the difficult task, which may contribute in improving the muscle strength and endurance and reducing the spasticity but also provide customizable system according to the child's motion characteristic. Improvements/Applications: Further study is needed to observe how passive exercise influences the movement characteristics of an active motion and how customized experiment settings can optimize the effect of pediatric rehabilitation for spastic cerebral palsy.

Assessment of MJO Simulation with Global Coupled Model 2 and 3.1 (Global Coupled 모델 2와 3.1의 MJO 모의성능 평가)

  • Moon, Ja-Yeon;Kim, Ki-Young;Cho, Jeong-A;Yang, Young-Min;Hyun, Yu-Kyung;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.235-246
    • /
    • 2022
  • A large number of MJO skill metrics and process-oriented MJO simulation metrics have been developed by previous studies including the MJO Working Group and Task Force. To assess models' successes and shortcomings in the MJO simulation, a standardized set of diagnostics with the additional set of dynamics-oriented diagnostics are applied. The Global Coupled (GC) model developed for the operation of the climate prediction system is used with the comparison between the GC2 and GC3.1. Two GC models successfully capture three-dimensional dynamic and thermodynamic structure as well as coherent eastward propagation from the reference regions of the Indian Ocean and the western Pacific. The low-level moisture convergence (LLMC) ahead of the MJO deep convection, the low-level westerly and easterly associated with the coupled Rossby-Kelvin wave and the upper-level divergence are simulated successfully. The GC3.1 model simulates a better three-dimensional structure of MJO and thus reproduces more realistic eastward propagation. In GC2, the MJO convection following the LLMC near and east of the Maritime Continent is much weaker than observation and has an asymmetric distribution of both low and upper-level circulation anomalies. The common shortcomings of GC2 and GC3.1 are revealed in the shorter MJO periods and relatively weak LLMC as well as convective activity over the western Indian Ocean.

A Study on Future Changes of Sea Surface Temperature and Ocean Currents in Northwest Pacific through CMIP6 Model Analysis (CMIP6 모형 결과 분석을 통한 북서태평양 해면수온과 해류의 미래변화에 대한 고찰)

  • JEONG, SUYEON;CHOI, SO HYEON;KIM, YOUNG HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.291-306
    • /
    • 2021
  • From the climate change scenario experiments of 21 models participating in Coupled Climate Model Inter-comparison Project Phase 6, future changes of sea surface temperature (SST) and Kuroshio in the Northwest Pacific were analyzed. The spatial feature of SST change was found to be related to the change of the current speed and spatial distribution of Kuroshio. To investigate the relationship between the change in latitude of the Kuroshio extension region, which flows along the boundary between the subtropical gyre and the subarctic gyre in the North Pacific, and the large-scale atmospheric circulation due to global warming, the zero-windstress curl line for each climate change experiment from 9 out of 21 models were compared. As the atmospheric radiative forcing increases due to the increase of greenhouse gases, it was confirmed that the zero-windstress curl line moves northward, which is consistent with the observation. These results indicate that as the Hadley Circulation expands to the north due to global warming, the warming of the mid-latitudes to which the Korean Peninsula belongs may be accelerated. The volume transport and temperature of the Tsushima Warm Current flowing into the East Sea through the Korea Strait also increased as the atmospheric radiative forcing increased.

Consideration on new research direction in marine environmental sciences in relation to climate change (기후변화에 대비한 환경연구의 방향)

  • Kim, Su-Am
    • Journal of Environmental Policy
    • /
    • v.1 no.1
    • /
    • pp.1-24
    • /
    • 2002
  • Due to the recent increase in greenhouse gases in atmosphere, world climate is rapidly changing and in turn, the earth ecosystem responds upon the climate changes. Comparing the ecosystem in the past, the present shapes of ecosystem is the result of the serious modification. Fishery resources in marine ecosystem, which usually occupy the upper trophic level, are also inevitable from such changes, because they always react to the natural environmental conditions. The northwestern Pacific is the most productive ocean in the world producing about 30% of world catch. From time to time, however, it has been notified that abundance, distribution and species composition of major fish species were altered by climate events. Furthermore, primary productivity of the ocean is not stable under the changing environments, so that carrying capacity of the ocean varies from one climate regime to another. Major climate events such as global warming, atmospheric circulation pattern, climate regime shift in the North Pacific, and El Nino event in the Pacific tropical waters were introduced in relation to fisheries aspects. The current status and future projection of fishery production was investigated, especially in the North Pacific including Korean waters. This new paradigm, ecosystem response to environmental variability, has become the main theme in marine ecology and fishery science, and the GLOBEC-type researches might provide a solution far cause-effect mechanism as well as prediction capability. Ecosystem management principles for multi-species should be adopted for better understanding and management of ecosystem.

  • PDF

ENSO Response to Global Warming as Simulated by ECHO-G/S (ECHO-G/S에 나타난 기후변화에 따른 엘니뇨 변화 특성 분석)

  • Lee, Hyo-Shin;Kwon, Won-Tae;Ahn, Joong-Bae;Boo, Kyung-On;Ch, Yu-Mi
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.365-379
    • /
    • 2007
  • Global warming may shift the properties and dynamics of ENSO. We study the changes in ENSO characteristics in a coupled general circulation model, ECHO-G/S. First, we analyse the mean state changes by comparing present day simulation and various high $CO_2$ climates. The model shows a little El Nino-like changes in the sea surface temperature and wind stress in the eastern tropical Pacific. As the mean temperature rises, the ENSO amplitude and the frequency of strong El Ninos and La Nina decrease. The analysis shows that the weakening of the oceanic sensitivities is related to the weakening of ENSO. In addition to the surface changes, the remote subsurface sea temperature response in the western Pacific to the wind stress in the eastern Pacific influences the subsequent ENSO amplitude. However, ENSO amplitude does not show linear response to the greenhouse gas concentrations.

Hadley Circulation Strength Change in Response to Global Warming: Statistics of Good Models

  • Son, Jun-Hyeok;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.665-672
    • /
    • 2016
  • In this study, we examine future changes in the Hadley cell (HC) strength using CMIP5 climate change simulations. The current study is an extension of a previous study by Seo et al. that used all 30 available models. Here, we select 18-23 well-performing models based on their significant internal sensitivity of the interannual HC strength variation to the latitudinal temperature gradient variation. The model projections along with simple scaling analysis show that the inter-model variability in the HC strength change is a result of the inter-model spread in the meridional temperature gradient across the subtropics for both DJF and JJA, not by the tropopause height or gross static stability change. The HC strength is expected to weaken significantly during DJF, while little change is expected in the JJA HC strength. Compared to the calculations with all model members, selected model statistics increase the linear correlation between the changes in HC strength and meridional temperature gradient by 13~23%, confirming the robust sensitivity of the HC strength to the meridional temperature gradient. Two scaling equations for the selected models predict changes in HC strength better than all-member predictions. In particular, the prediction improvement in DJF is as high as 30%. The simple scaling relations successfully predict both the ensemble-mean changes and model-to-model variations in the HC strength for both seasons.

Characteristics of Summer Tropospheric Ozone over East Asia in a Chemistry-climate Model Simulation

  • Park, Hyo-Jin;Moon, Byung-Kwon;Wie, Jieun
    • Journal of the Korean earth science society
    • /
    • v.38 no.5
    • /
    • pp.345-356
    • /
    • 2017
  • It is important to understand the variability of tropospheric ozone since it is both a major pollutant affecting human health and a greenhouse gas influencing global climate. We analyze the characteristics of East Asia tropospheric ozone simulated in a chemistry-climate model. We use a global chemical transport model, driven by the prescribed meteorological fields from an air-sea coupled climate model simulation. Compared with observed data, the ozone simulation shows differences in distribution and concentration levels; in the vicinity of the Korean Peninsula, a large error occurred in summer. Our analysis reveals that this bias is mainly due to the difference in atmospheric circulation, as the anomalous southerly winds lead to the decrease in tropospheric ozone in this region. In addition, observational data have shown that the western North Pacific subtropical high (WNPSH) reduces tropospheric ozone across the southern China/Korean Peninsula/Japan region. In the model, the ozone changes associated with WNPSH are shifted westward relative to the observations. Our findings suggest that the variations in WNPSH should be considered in predicting tropospheric ozone concentrations.