DOI QR코드

DOI QR Code

Assessment of MJO Simulation with Global Coupled Model 2 and 3.1

Global Coupled 모델 2와 3.1의 MJO 모의성능 평가

  • Moon, Ja-Yeon (Research Institute, 4D Solution, Co., Ltd.) ;
  • Kim, Ki-Young (Research Institute, 4D Solution, Co., Ltd.) ;
  • Cho, Jeong-A (Research Institute, 4D Solution, Co., Ltd.) ;
  • Yang, Young-Min (Department of Atmospheric Science, Nanjing University of Information Science and Technology) ;
  • Hyun, Yu-Kyung (Climate Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Baek-Jo (Climate Research Department, National Institute of Meteorological Sciences)
  • 문자연 ((주)포디솔루션 기업부설연구소) ;
  • 김기영 ((주)포디솔루션 기업부설연구소) ;
  • 조정아 ((주)포디솔루션 기업부설연구소) ;
  • 양영민 (난징정보과학기술대학교 대기과학과) ;
  • 현유경 (국립기상과학원 기후연구부) ;
  • 김백조 (국립기상과학원 기후연구부)
  • Received : 2022.07.20
  • Accepted : 2022.08.04
  • Published : 2022.09.30

Abstract

A large number of MJO skill metrics and process-oriented MJO simulation metrics have been developed by previous studies including the MJO Working Group and Task Force. To assess models' successes and shortcomings in the MJO simulation, a standardized set of diagnostics with the additional set of dynamics-oriented diagnostics are applied. The Global Coupled (GC) model developed for the operation of the climate prediction system is used with the comparison between the GC2 and GC3.1. Two GC models successfully capture three-dimensional dynamic and thermodynamic structure as well as coherent eastward propagation from the reference regions of the Indian Ocean and the western Pacific. The low-level moisture convergence (LLMC) ahead of the MJO deep convection, the low-level westerly and easterly associated with the coupled Rossby-Kelvin wave and the upper-level divergence are simulated successfully. The GC3.1 model simulates a better three-dimensional structure of MJO and thus reproduces more realistic eastward propagation. In GC2, the MJO convection following the LLMC near and east of the Maritime Continent is much weaker than observation and has an asymmetric distribution of both low and upper-level circulation anomalies. The common shortcomings of GC2 and GC3.1 are revealed in the shorter MJO periods and relatively weak LLMC as well as convective activity over the western Indian Ocean.

Keywords

Acknowledgement

이 연구는 기상청 「기후 및 기후변화 감시·예측정보 응용 기술개발사업」(KMI2020-01310)과 2019년도 정부재원(과학기술정보통신부 여성과학기술인 R&D 경력복귀 지원사업, WISET 제 2019-535 WISET 제2019-535호)의 한국연구재단과 한국여성과학기술인 지원센터의 지원으로 수행되었습니다.

References

  1. Ahn, M.-S., D. Kim, K. R. Sperber, I.-S. Kang, E. Maloney, D. Waliser, and H. Hendon on behalf of WGNE MJOTF, 2017: MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis. Climate Dyn., 49, 4023-4045, doi:10.1007/s00382-017-3558-4.
  2. Ahn, M.-S., D. Kim, D. Kang, J. Lee, K. R. Sperber, P. J. Gleckler, X. Jiang, Y.-G. Ham, and H. Kim, 2020: MJO propagation across the Maritime Continent: Are CMIP6 models better than CMIP5 models? Geophys. Res. Lett., 47, e2020GL087250, doi:10.1029/2020GL087250.
  3. Bell, B., and Coauthors, 2020: ERA5 hourly data on pressure levels from 1950 to 1978 (preliminary version). Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [Available online at https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5].
  4. Boutle, I. A., S. J. Abel, P. G. Hill, and C. J. Morcrette, 2014: Spatial variability of liquid cloud and rain: observations and microphysical effects. Q. J. R. Meteorol. Soc., 140, 583-594, doi:10.1002/qj.2140.
  5. DeMott, C. A., B. O. Wolding, E. D. Maloney, and D. A. Randall, 2018: Atmospheric mechanisms for MJO decay over the Maritime Continent. J. Geophys. Res. Atmos., 123, 5188-5204, doi:10.1029/2017JD026979.
  6. Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor. Climatol., 18, 1016-1022. https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
  7. Hyun, Y.-K., and Coauthors, 2022: The KMA Global Seasonal forecasting system (GloSea6) - Part 2: Climatological mean bias characteristics. Atmosphere, 32, 87-101, doi:10.14191/Atmos.2022.32.2.087 (in Korean with English abstract).
  8. Jiang, X., 2017: Key processes for the eastward propagation of the Madden-Julian Oscillation based on multimodel simulations. J. Geophys. Res. Atmos., 122, 755-770, doi:10.1002/2016JD025955.
  9. Kim, D., and Coauthors, 2014: Process-oriented MJO simulation diagnostic: moisture sensitivity of simulated convection. J. Climate, 27, 5379-5395, doi:10.1175/JCLI-D-13-00497.1.
  10. Kim, H.-R., J. Lee, Y.-K. Hyun, and S.-O. Hwang, 2021a: The KMA Global Seasonal forecasting system (GloSea6) - Part 1: operational system and improvements. Atmosphere, 31, 341-359, doi:10.14191/Atmos. 2021.31.3.341 (in Korean with English abstract).
  11. Kim, J.-Y., Y.-K. Hyun, J. Lee, and B.-C. Shin, 2021b: Assessment on the East Asian summer monsoon simulation by improved Global Coupled (GC) model. Atmosphere, 31, 563-576, doi:10.14191/Atmos.2021. 31.5.563 (in Korean with English abstract).
  12. Kim, S.-W., H. Kim, K. Song, S.-W. Son, Y. Lim, H.-S. Kang, and Y.-K. Hyun, 2018: Subseasonal-to-sea-sonal (S2S) prediction skills of GloSea5 model: Part 1. Geopotential height in the Northern Hemisphere extratropics. Atmosphere, 28, 233-245, doi:10.14191/Atmos.2018.28.3.233 (in Korean with English abstract).
  13. Knutson, T. R., and K. M. Weickmann, 1987: 30-60 day atmospheric oscillation: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 1407-1436. https://doi.org/10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2
  14. Lau, K.-M., and T. J. Phillips, 1986: Coherent fluctuations of extratropical geopotential height and tropical convection in intraseasonal time scales. J. Atmos. Sci., 43, 1164-1181. https://doi.org/10.1175/1520-0469(1986)043<1164:CFOFGH>2.0.CO;2
  15. Liebmann, B., and C.A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275-1277.
  16. Madden, R. A., and P. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702-708. https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
  17. Madden, R. A., and P. Julian, 1972: Description of a global-scale circulation cell in the tropics with a 40-50 day period. J. Atmos. Sci., 29, 1109-1123. https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
  18. Megann, A., D. Storkey, Y. Aksenov, S. Alderson, D. Calvert, T. Graham, P. Hyder, J. Siddorn, and B. Sinha, 2014: GO5.0: The joint NERC-Met Office NEMO Global Ocean model for use in coupled and forced applications. Geosci. Model Dev., 7, 1069-1092, doi:10.5194/gmd-7-1069-2014.
  19. MJOWG, 2009: MJO simulation diagnostics. J. Clim., 22, 3006-3030. https://doi.org/10.1175/2008JCLI2731.1
  20. Rae, J. G. L., H. T. Hewitt, A. B. Keen, J. K. Ridley, A. E. West, C. M. Harris, E. C. Hunke, and D. N. Walters, 2015: Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model. Geosci. Model Dev., 8, 2221-2230, doi:10.5194/gmd8-2221-2015.
  21. Ridley, J. K., E. W. Blockley, A. B. Keen, J. G. L. Rae, A. E. West, and D. Schroeder, 2018: The sea ice model component of HadGEM3-GC3.1. Geosci. Model Dev., 11, 713-723, doi:10.5194/gmd-11-713-2018.
  22. Storkey, D., and Coauthors, 2018: UK Global Ocean GO6 and GO7: A traceable hierarchy of model resolutions. Geosci. Model Dev., doi:10.5194/gmd-11-3187- 2018.
  23. Waliser, D. E., K. M. Lau, W. Stern, and C. Jones, 2003: Potential predictability of the Madden-Julian oscillation. Bull. Amer. Meteor. Soc., 84, 33-50. https://doi.org/10.1175/BAMS-84-1-33
  24. Walters, D. N., and Coauthors, 2017: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model Dev., 10, 1487-1520, doi:10.5194/gmd-10-1487-2017.
  25. Walters, D. N., and Coauthors, 2019: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev., 12, 1909-1963, doi:10.5194/gmd-12-1909-2019.
  26. Wang, B., F. Liu, and G. Chen, 2016: A trio-interaction theory for Madden-Julian oscillation. Geosci. Lett., 3, doi:10.1186/s40562-016-0066-z.
  27. Wang, B., S.-S. Lee, D. E. Waliser, C. Zhang, A. Sobel, E. Maloney, T. Li, X. Jiang, and K.-J. Ha, 2018: Dynamics-oriented diagnostics for the Madden-Julian Oscillation. J. Clim., 31, 3117-3135, doi:10.1175/JCLI-D17-0332.1.
  28. Wang, J., H. M. Kim, D. Kim, S. A. Henderson, C. Stan, and E. D. Maloney, 2020: MJO teleconnections over the PNA region in climate models. Part II: Impacts of the MJO and basic State. J. Clim., 33, 5081-5101, doi:10.1175/JCLI-D-19-0865.1.
  29. Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30-60 day) fluctuations of outgoing longwave radiation and 250mb streamfunction during northern winter. Mon. Wea. Rev., 113, 941-961. https://doi.org/10.1175/1520-0493(1985)113<0941:IDFOOL>2.0.CO;2
  30. Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917-1932. https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
  31. Williams, K. D., and Coauthors, 2018: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations. J. Adv. Model. Earth Sys., 10, 357- 380, doi:10.1002/2017MS001115.
  32. Yang, Y-M., T. Shim, J.-Y. Moon, K.-Y. Kim, and Y.-K. Hyun, 2021: Diagnosing ISO Forecast from GloSea5 Using Dynamic-Oriented ISO Theory. Atmosphere, 12, 114, doi:10.3390/atmos12010114.
  33. Zhang, C., 2013: Madden-Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 1849-1870, doi: 10.1175/BAMS-D-12-00026.1.