Browse > Article
http://dx.doi.org/10.14191/Atmos.2022.32.3.235

Assessment of MJO Simulation with Global Coupled Model 2 and 3.1  

Moon, Ja-Yeon (Research Institute, 4D Solution, Co., Ltd.)
Kim, Ki-Young (Research Institute, 4D Solution, Co., Ltd.)
Cho, Jeong-A (Research Institute, 4D Solution, Co., Ltd.)
Yang, Young-Min (Department of Atmospheric Science, Nanjing University of Information Science and Technology)
Hyun, Yu-Kyung (Climate Research Department, National Institute of Meteorological Sciences)
Kim, Baek-Jo (Climate Research Department, National Institute of Meteorological Sciences)
Publication Information
Atmosphere / v.32, no.3, 2022 , pp. 235-246 More about this Journal
Abstract
A large number of MJO skill metrics and process-oriented MJO simulation metrics have been developed by previous studies including the MJO Working Group and Task Force. To assess models' successes and shortcomings in the MJO simulation, a standardized set of diagnostics with the additional set of dynamics-oriented diagnostics are applied. The Global Coupled (GC) model developed for the operation of the climate prediction system is used with the comparison between the GC2 and GC3.1. Two GC models successfully capture three-dimensional dynamic and thermodynamic structure as well as coherent eastward propagation from the reference regions of the Indian Ocean and the western Pacific. The low-level moisture convergence (LLMC) ahead of the MJO deep convection, the low-level westerly and easterly associated with the coupled Rossby-Kelvin wave and the upper-level divergence are simulated successfully. The GC3.1 model simulates a better three-dimensional structure of MJO and thus reproduces more realistic eastward propagation. In GC2, the MJO convection following the LLMC near and east of the Maritime Continent is much weaker than observation and has an asymmetric distribution of both low and upper-level circulation anomalies. The common shortcomings of GC2 and GC3.1 are revealed in the shorter MJO periods and relatively weak LLMC as well as convective activity over the western Indian Ocean.
Keywords
MJO; Global Couple model; Dynamics-oriented diagnostics; Climate prediction system;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Boutle, I. A., S. J. Abel, P. G. Hill, and C. J. Morcrette, 2014: Spatial variability of liquid cloud and rain: observations and microphysical effects. Q. J. R. Meteorol. Soc., 140, 583-594, doi:10.1002/qj.2140.   DOI
2 Hyun, Y.-K., and Coauthors, 2022: The KMA Global Seasonal forecasting system (GloSea6) - Part 2: Climatological mean bias characteristics. Atmosphere, 32, 87-101, doi:10.14191/Atmos.2022.32.2.087 (in Korean with English abstract).   DOI
3 Kim, H.-R., J. Lee, Y.-K. Hyun, and S.-O. Hwang, 2021a: The KMA Global Seasonal forecasting system (GloSea6) - Part 1: operational system and improvements. Atmosphere, 31, 341-359, doi:10.14191/Atmos. 2021.31.3.341 (in Korean with English abstract).   DOI
4 Knutson, T. R., and K. M. Weickmann, 1987: 30-60 day atmospheric oscillation: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 1407-1436.   DOI
5 Madden, R. A., and P. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702-708.   DOI
6 Storkey, D., and Coauthors, 2018: UK Global Ocean GO6 and GO7: A traceable hierarchy of model resolutions. Geosci. Model Dev., doi:10.5194/gmd-11-3187- 2018.   DOI
7 Wang, J., H. M. Kim, D. Kim, S. A. Henderson, C. Stan, and E. D. Maloney, 2020: MJO teleconnections over the PNA region in climate models. Part II: Impacts of the MJO and basic State. J. Clim., 33, 5081-5101, doi:10.1175/JCLI-D-19-0865.1.   DOI
8 MJOWG, 2009: MJO simulation diagnostics. J. Clim., 22, 3006-3030.   DOI
9 Williams, K. D., and Coauthors, 2018: The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations. J. Adv. Model. Earth Sys., 10, 357- 380, doi:10.1002/2017MS001115.   DOI
10 Yang, Y-M., T. Shim, J.-Y. Moon, K.-Y. Kim, and Y.-K. Hyun, 2021: Diagnosing ISO Forecast from GloSea5 Using Dynamic-Oriented ISO Theory. Atmosphere, 12, 114, doi:10.3390/atmos12010114.   DOI
11 Zhang, C., 2013: Madden-Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 1849-1870, doi: 10.1175/BAMS-D-12-00026.1.   DOI
12 Kim, D., and Coauthors, 2014: Process-oriented MJO simulation diagnostic: moisture sensitivity of simulated convection. J. Climate, 27, 5379-5395, doi:10.1175/JCLI-D-13-00497.1.   DOI
13 Liebmann, B., and C.A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275-1277.
14 Waliser, D. E., K. M. Lau, W. Stern, and C. Jones, 2003: Potential predictability of the Madden-Julian oscillation. Bull. Amer. Meteor. Soc., 84, 33-50.   DOI
15 Walters, D. N., and Coauthors, 2019: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev., 12, 1909-1963, doi:10.5194/gmd-12-1909-2019.   DOI
16 Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917-1932.   DOI
17 Ahn, M.-S., D. Kim, K. R. Sperber, I.-S. Kang, E. Maloney, D. Waliser, and H. Hendon on behalf of WGNE MJOTF, 2017: MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis. Climate Dyn., 49, 4023-4045, doi:10.1007/s00382-017-3558-4.   DOI
18 Megann, A., D. Storkey, Y. Aksenov, S. Alderson, D. Calvert, T. Graham, P. Hyder, J. Siddorn, and B. Sinha, 2014: GO5.0: The joint NERC-Met Office NEMO Global Ocean model for use in coupled and forced applications. Geosci. Model Dev., 7, 1069-1092, doi:10.5194/gmd-7-1069-2014.   DOI
19 Rae, J. G. L., H. T. Hewitt, A. B. Keen, J. K. Ridley, A. E. West, C. M. Harris, E. C. Hunke, and D. N. Walters, 2015: Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model. Geosci. Model Dev., 8, 2221-2230, doi:10.5194/gmd8-2221-2015.   DOI
20 Ridley, J. K., E. W. Blockley, A. B. Keen, J. G. L. Rae, A. E. West, and D. Schroeder, 2018: The sea ice model component of HadGEM3-GC3.1. Geosci. Model Dev., 11, 713-723, doi:10.5194/gmd-11-713-2018.   DOI
21 Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30-60 day) fluctuations of outgoing longwave radiation and 250mb streamfunction during northern winter. Mon. Wea. Rev., 113, 941-961.   DOI
22 Walters, D. N., and Coauthors, 2017: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model Dev., 10, 1487-1520, doi:10.5194/gmd-10-1487-2017.   DOI
23 Wang, B., F. Liu, and G. Chen, 2016: A trio-interaction theory for Madden-Julian oscillation. Geosci. Lett., 3, doi:10.1186/s40562-016-0066-z.   DOI
24 Wang, B., S.-S. Lee, D. E. Waliser, C. Zhang, A. Sobel, E. Maloney, T. Li, X. Jiang, and K.-J. Ha, 2018: Dynamics-oriented diagnostics for the Madden-Julian Oscillation. J. Clim., 31, 3117-3135, doi:10.1175/JCLI-D17-0332.1.   DOI
25 Ahn, M.-S., D. Kim, D. Kang, J. Lee, K. R. Sperber, P. J. Gleckler, X. Jiang, Y.-G. Ham, and H. Kim, 2020: MJO propagation across the Maritime Continent: Are CMIP6 models better than CMIP5 models? Geophys. Res. Lett., 47, e2020GL087250, doi:10.1029/2020GL087250.   DOI
26 Bell, B., and Coauthors, 2020: ERA5 hourly data on pressure levels from 1950 to 1978 (preliminary version). Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [Available online at https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5].
27 DeMott, C. A., B. O. Wolding, E. D. Maloney, and D. A. Randall, 2018: Atmospheric mechanisms for MJO decay over the Maritime Continent. J. Geophys. Res. Atmos., 123, 5188-5204, doi:10.1029/2017JD026979.   DOI
28 Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor. Climatol., 18, 1016-1022.   DOI
29 Jiang, X., 2017: Key processes for the eastward propagation of the Madden-Julian Oscillation based on multimodel simulations. J. Geophys. Res. Atmos., 122, 755-770, doi:10.1002/2016JD025955.   DOI
30 Kim, J.-Y., Y.-K. Hyun, J. Lee, and B.-C. Shin, 2021b: Assessment on the East Asian summer monsoon simulation by improved Global Coupled (GC) model. Atmosphere, 31, 563-576, doi:10.14191/Atmos.2021. 31.5.563 (in Korean with English abstract).   DOI
31 Kim, S.-W., H. Kim, K. Song, S.-W. Son, Y. Lim, H.-S. Kang, and Y.-K. Hyun, 2018: Subseasonal-to-sea-sonal (S2S) prediction skills of GloSea5 model: Part 1. Geopotential height in the Northern Hemisphere extratropics. Atmosphere, 28, 233-245, doi:10.14191/Atmos.2018.28.3.233 (in Korean with English abstract).   DOI
32 Lau, K.-M., and T. J. Phillips, 1986: Coherent fluctuations of extratropical geopotential height and tropical convection in intraseasonal time scales. J. Atmos. Sci., 43, 1164-1181.   DOI
33 Madden, R. A., and P. Julian, 1972: Description of a global-scale circulation cell in the tropics with a 40-50 day period. J. Atmos. Sci., 29, 1109-1123.   DOI