• Title/Summary/Keyword: global buckling

Search Result 137, Processing Time 0.024 seconds

Stability of structural steel tubular props: An experimental, analytical, and theoretical investigation

  • Zaid A. Al-Sadoon;Samer Barakat;Farid Abed;Aroob Al Ateyat
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.143-159
    • /
    • 2023
  • Recently, the design of scaffolding systems has garnered considerable attention due to the increasing number of scaffold collapses. These incidents arise from the underestimation of imposed loads and the site-specific conditions that restrict the application of lateral restraints in scaffold assemblies. The present study is committed to augmenting the buckling resistance of vertical support members, obviating the need for supplementary lateral restraints. To achieve this objective, experimental and computational analyses were performed to assess the axial load buckling capacity of steel props, composed of two hollow steel pipes that slide into each other for a certain length. Three full-scale steel props with various geometric properties were tested to construct and validate the analytical models. The total unsupported length of the steel props is 6 m, while three pins were installed to tighten the outer and inner pipes in the distance they overlapped. Finite Element (FE) modeling is carried out for the three steel props, and the developed models were verified using the experimental results. Also, theoretical analysis is utilized to verify the FE analysis. Using the FE-verified models, a parametric study is conducted to evaluate the effect of different inserted pipe lengths on the steel props' axial load capacity and lateral displacement. Based on the results, the typical failure mode for the studied steel props is global elastic buckling. Also, the prop's elastic buckling strength is sensitive to the inserted length of the smaller pipe. A threshold of minimum inserted length is one-third of the total length, after which the buckling strength increases. The present study offers a prop with enhanced buckling resistance and introduces an equation for calculating an equivalent effective length factor (k), which can be seamlessly incorporated into Euler's buckling equation, thereby facilitating the determination of the buckling capacity of the enhanced props and providing a pragmatic engineering solution.

Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.301-321
    • /
    • 2016
  • The objective of this paper is to investigate buckling behavior of composite laminated cylinders by using semi-analytical finite strip method. The shell is subjected to deformation-dependent loads which remain normal to the shell middle surface throughout the deformation process. The load stiffness matrix, which is responsible for variation of load direction, is also throughout the deformation process. The shell is divided into several closed strips with alignment of their nodal lines in the circumferential direction. The governing equations are derived based on the first-order shear deformation theory with Sanders-type of kinematic nonlinearity. Displacements and rotations of the shell middle surface are approximated by combining polynomial functions in the meridional direction and truncated Fourier series along with an appropriate number of harmonic terms in the circumferential direction. The load stiffness matrix, which is responsible for variation of load direction, is also derived for each strip and after assembling, global load stiffness matrix of the shell is formed. The numerical illustrations concern the pressure stiffness effect on buckling pressure under various conditions. The results indicate that considering pressure stiffness causes buckling pressure reduction which in turn depends on various parameters such as geometry and lay-ups of the shell.

Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 2017
  • This paper is presented to solve the buckling problem of functionally graded truncated conical shells subjected to displacement-dependent pressure which remains normal to the shell middle surface throughout the deformation process by the semi-analytical finite strip method. Material properties are assumed to be temperature dependent, and varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The governing equations are derived based on first-order shear deformation theory which accounts for through thickness shear flexibility with Sanders-type of kinematic nonlinearity. The element linear and geometric stiffness matrices are obtained using virtual work expression for functionally graded materials. The load stiffness also called pressure stiffness matrix which accounts for variation of load direction is derived for each strip and after assembling, global load stiffness matrix of the shell which may be un-symmetric is formed. The un-symmetric parts which are due to load non-uniformity and unconstrained boundaries have been separated. A detailed parametric study is carried out to quantify the effects of power-law index of functional graded material and shell geometry variations on the difference between follower and non-follower lateral buckling pressures. The results indicate that considering pressure stiffness which arises from follower action of pressure causes considerable reduction in estimating buckling pressure.

Postbuckling Analyses and Derivations of Shell Knockdown Factors for Isogrid-Stiffened Cylinders Under Compressive Force and Internal Pressure (압축력과 내부 압력을 동시에 받는 등방성 격자 원통 구조의 후좌굴 해석 및 좌굴 Knockdown factor의 도출)

  • Kim, Han-Il;Sim, Chang-Hoon;Park, Jae-Sang;Kim, Do-Young;Yoo, Joon-Tae;Yoon, Young-Ha;Lee, Keejoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.653-661
    • /
    • 2020
  • This study derives numerically the shell Knockdown factors for the isogrid-stiffened cylinders of space launch vehicles when the axially compressive force and internal pressure are applied simultaneously. A commercial nonlinear finite element analysis software, ABAQUS, is used for the present work. Nonlinear postbuckling analyses are conducted to calculate the global buckling loads of a cylinder without and with the internal pressure. The shell Knockdown factor is numerically derived using the predicted global buckling loads without and with the geometrically initial imperfection of a cylinder. When the internal pressure of 500 kPa and compressive force are applied to the cylinder, the global buckling load and Knockdown factor increases by 304% and 53%, respectively, as compared to the results without the internal pressure.

A Study on the Critical Point and Bifurcation According to Load Mode of Dome-Typed Space Frame Structures (돔형 스페이스 프레임 구조물의 하중모드에 따른 분기점 특성에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Lee, Seung-Jae;Kim, Jong-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.121-130
    • /
    • 2011
  • Space frame structures have the advantage of constructing a large space structures without column and it may be considered as a shell structure. Nevertheless, with the characteristics of thin and long term of spacing, the unstable problem of space structure could not be set up clearly, and there is a huge difference between theory and experiment. Therefore, in this work, the tangential stiffness matrix of space frame structures is studied to solve the instability problem, and the nonlinear incremental analysis of the structures considering rise-span ratio(${\mu}$) and the ratio of load($R_L$) is performed for searching unstable points. Basing on the results of the example, global buckling can be happened by low rise-span ratio(${\mu}$), nodal buckling can be occurred by high rise-span ratio(${\mu}$). And in case of multi node space structure applying the ratio of load($R_L$), the nodal buckling phenomenon occur at low the ratio of load($R_L$), the global buckling occur a1 high the ratio of load($R_L$). In case of the global buckling, the load of bifurcation is about from 50% to 70% of perfect one's snap-through load.

A Study on the Structural Behavior of Welded Box Columns (강제 교각의 거동에 관한 연구)

  • 김인한;손용석;엄진호;송준엽;권영봉
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.87-94
    • /
    • 1999
  • The structural behavior of welded steel box columns subjected to axial compression and combined load of axial and horizontal load is described. The nonlinear stress-strain relation of the material and residual stress resulted from welds were included in the analysis. Inelastic buckling analysis of hollow rectangular sections of various width-thickness and slenderness ratios was carried out using the semi-analytical and spline finite strip method to investigate the local and global bucking stress and mode interaction. The buckling stress was compared with test results and design curves. Post-buckling behavior was traced by the finite element program(ADINA) and compared with experimental results. The comparison showed that the ultimate stress can be used for the design purpose.

  • PDF

Elastic Buckling Analysis of Laminated Composite Plates with Embedded Square Delamination Using an Enhanced Assumed Strain Solid Element (강화변형률 솔리드 요소를 사용한 사각형태 층간분리를 갖는 복합적층판의 탄성좌굴해석)

  • Park, Dae-Yong;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.1-13
    • /
    • 2010
  • Delamination reduces an elastic buckling load of the laminated composite structures and lead to global structural failure at loads below the design level. Therefore, the problem of the delamination buckling of laminated composite structures has generated significant research interest and has been the subject of many theoretical and experimental investigations. However, questions still remain regarding a complete understanding and details of the phenomena involved. In this paper an efficient finite element model is presented for analyzing the elastic buckling behavior of laminated composite plates with square embedded delamination using a solid element based on a three-dimensional theory. The solid finite element, named by EAS-SOLID8, based on an enhanced assumed strain method is developed. The study for elastic buckling behavior of laminated composite plates with embedded square delaminations are focused on various parameters, such as support condition and width-to-thickness ratio. Both graphs and buckling modes in this paper are good guide for design of the laminated composite plates with embedded square delamination.

  • PDF

Derivations of Buckling Knockdown Factors for Composite Cylinders Considering Various Shell Thickness Ratios and Slenderness Ratios (다양한 두께비와 세장비를 고려한 복합재 원통 구조의 좌굴 Knockdown factor의 도출)

  • Kim, Do-Young;Sim, Chang-Hoon;Kim, Han-Il;Park, Jae-Sang;Yoo, Joon-Tae;Yoon, Young-Ha;Lee, Keejoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.321-328
    • /
    • 2021
  • This paper derives numerically new buckling Knockdown factors for the lightweight design of the composite propellant tanks for space launch vehicles. A nonlinear finite element analysis code, ABAQUS, is used for the present postbuckling analysis of composite cylinders under compressive loads. Various thickness ratios (R/t) and slenderness ratios (L/R) are considered and Single Perturbation Load Approach is applied to represent the geometric initial imperfection of the composite cylinder. For the composite cylinder with thickness ratio of 500 and slenderness ratio of 2.04, the buckling Knockdown factor derived in this work is higher by 84.38% than NASA's previous buckling design criteria. Therefore, it is investigated that a lightweight design is possible when the present Knockdown factors are used for the design of composite propellant tanks. In addition, it is shown that global buckling loads and buckling Knockdown factors decrease as the thickness ratio or slenderness ratio of composite cylinders increases.

An Evaluation of Axial Compressive Strength in Steel Stud (스틸스터드의 압축내력 평가)

  • Shin, TaeSong
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.677-689
    • /
    • 1998
  • In relation to concentrically loaded compression, this research is to describe, analyze, and evaluate the design strength in steel stud. The similarity and difference among load and resistance factor design specification for cold-formed steel structural members (AISI), cold-formed thin gauge members and sheeting (EC3 part 1.3), and German draft (DASt-Richtlinie 016) are introduced, discussed, and systematically evaluated. Especially, the effective width and global instability problems (flexural buckling and torsional flexural buckling) are here implied in this research. The design axial strength by dual standards (AISI and EC3) is calculated and compared using the example.

  • PDF

Free Vibrations and Buckling Loads of Axially Loaded Cross-Ply Laminated Composite Beam-Columns with Multiple Delaminations (다층간분리된 직교 적층 보-기둥의 자유진동과 좌굴하중)

  • 이성희;김형열;박기태;박대효
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.523-534
    • /
    • 2002
  • Free vibration and buckling analysis of multi-delaminated composite beam-columns subjected to axial compressive load is performed in the present study In order to investigate the effects of multi-delaminations on the natural frequency and the elastic buckling load of multi-delaminated beam-columns, the general kinematic continuity conditions are derived from the assumption of constant slope and curvature at the multi-dclamination tip. The characteristic equation of multi-delaminated beam-column is obtained by dividing the global multi-delauunated beam-columns into segments and by imposing recurrence relation from the continuity conditions on each sub-beam-column. The natural frequency and the elastic buck)ing load of multi-delaminated beam-columns according to the incremental load of axial compression, which is limited to the maximum elastic buckling load of sound laminated beam-column, are obtained. It is found that the sizes, locations and numbers of multi-delaminations have significant effect on natural frequency and elastic buckling load, especially the latter ones.