• 제목/요약/키워드: glioblastoma stem cells

검색결과 19건 처리시간 0.024초

다형성 교모세포종의 항생제 내성 종양 줄기세포 (Chemotherapeutic Drug Resistant Cancer Stem-like Cells of Glioma)

  • 강미경;강수경
    • 생명과학회지
    • /
    • 제17권8호통권88호
    • /
    • pp.1039-1045
    • /
    • 2007
  • 다형성 교모세포종은 뇌종양 가운데 가장 빈번하게 발병하는 악성종양이다. 다형성 교모세포종에 종양 줄기세포가 존재한다는 보고가 있음에도 불구하고, 항암제 내성과 종양 줄기세포 사이의 상호 연관성에 관한 연구는 아직 미비한 실정이다. 본 연구에서 다형성 교모세포종 세포주 A172 및 뇌종양 환자로부터 확립한 GBM2에 1,3-bis(2 -chloroethyl)-1-nitrosourea (BiCNU)를 처리시 극소량의 세포군만이 생존하며, 이들 생존 세포군은 BiCNU 재처리에 내성을 나타내는 것으로 조사되었다. 또한 이 다형성 교모세포종 유래 BiCNU-내성세포군의 Erk 및 Akt 인산화 활성이 증가되었으며, CD133 줄기세포 표지인자를 발현하는 세포가 다량 존재하였다. 이와 아울러, 다형성 교모세포종 유래 BiCNU-내성세포를 severe combined immuno-deficient (SCID) mouse brain에 이식하였을 때 암이 형성되는 것을 관찰할 수 있었다. 이와 같은 결과는 다형성 교모세포종 유래 BiCNU-내성세포가 종양줄기세포의 능력을 가지는 것으로 생각된다. 따라서 이상의 결과는 다형성 교모세포종에 존재하는 종양줄기세포가 항암제 내성에 관여 한다는 중요한 단서를 제공해줄 수 있을 것으로 사료된다.

교모세포종 암줄기세포에 대한 진피 소수성 추출물의 항암 활성 (Anticancer activity of chloroform extract of Citrus unshiu Markovich peel against glioblastoma stem cells)

  • 김유진;심예은;정혜진
    • 한국식품과학회지
    • /
    • 제54권1호
    • /
    • pp.28-34
    • /
    • 2022
  • 본 연구에서는 진피 소수성 추출물(CECU)의 U87MG 교모세포종 암줄기세포에 대한 항암 활성을 확인하였다. 그 결과, CECU는 25-200 ㎍/mL의 농도 범위에서 U87MG 교모세포종 암줄기세포의 증식, 종양구체 형성과 이동능력을 유의적으로 저해하였다. 특히, CECU는 G0/G1기에서 세포주기 정지와 세포사멸을 유도하여 교모세포종 암줄기세포의 증식을 억제할 수 있었다. 게다가, 교모세포종 암줄기세포에 대한 CECU의 항암 활성은 CD133, Oct4, Nanog, Integrin α6, ALDH1A1과 같은 줄기세포능 조절인자들의 발현과 STAT3 신호전달경로를 저해함으로써 유도된 것임을 확인하였다. 마지막으로, CAM assay를 통해 CECU가 U87MG 교모세포종 암줄기세포의 in vivo 종양 형성을 효과적으로 억제함을 입증하였다. 따라서, 본 연구는 진피 소수성 추출물이 주요 stemness marker들의 발현과 핵심 stemness 조절 신호전달경로를 억제함으로써 U87MG 교모세포종 암줄기세포에 대한 항암 활성을 나타냄을 입증하여, 교모세포종의 예방 및 치료를 위한 천연물 소재로서의 활용 가능성을 새롭게 제시하였다.

Expression of HBP2 in Human Spermatogonial Stem Cell-like Cells from Nonobstructive Azoospermia Patients and Its Role in G1/S Transition & Downregulation in Colon Cancer

  • Yoo, Jung-Ki;Lee, Dong-Ryul;Lim, Jung-Jin;Kim, Jin-Kyeoung
    • Reproductive and Developmental Biology
    • /
    • 제32권4호
    • /
    • pp.211-215
    • /
    • 2008
  • The HMG box containing protein (HBP) has a high mobility group domain and involved in the regulation of proliferation and differentiation of tissues. We screened HBP2 in glioblastoma using Suppression Subtractive Hybridization (SSH) and isolated human spermatogonial stem cell-like cells (hSSC-like cells) derived from patients of nonobstructive azoospermia (NOA). Expression of HBP2 was analyzed by RT-PCR in undifferentiated stem cells (human Embryonic Stem Cells, hSSC-like cells 2P) and spontaneous differentiated stem cells (hSSC-like cells 4P). It was overexpressed in hESC and hSSC-like cells 2P but not in hSSC-like cells 4P. Also, the expression level of HBP2 was downregulated in colon tumor tissues compared to normal tissues. Specifically in synchronized WI-38 cells, HBP2 was highly upregulated until the G1 phase of the cell cycle and gradually decreased during the S phase. Our results suggest that HBP2 was downregulated during the spontaneous differentiation of hSSC-like cells. HBP2 was differently expressed in colon tissues and was related to G1-progression in WI-38 cells. It may playa role in the maintenance of an undifferentiated hSSC-like cell state and transits from G1 to S in WI-38 cells. This research was important that it identified a biomarker for an undifferentiated state of hSSC-like cells and characterized its involvement to arrest during cell cycle in colon cancer.

Specificity Protein 1 Expression Contributes to Bcl-w-Induced Aggressiveness in Glioblastoma Multiforme

  • Lee, Woo Sang;Kwon, Junhye;Yun, Dong Ho;Lee, Young Nam;Woo, Eun Young;Park, Myung-Jin;Lee, Jae-Seon;Han, Young-Hoon;Bae, In Hwa
    • Molecules and Cells
    • /
    • 제37권1호
    • /
    • pp.17-23
    • /
    • 2014
  • We already had reported that Bcl-w promotes invasion or migration in gastric cancer cells and glioblastoma multiforme (GBM) by activating matrix metalloproteinase-2 (MMP-2) via specificity protein 1 (Sp1) or ${\beta}$-cateinin, respectively. High expression of Bcl-w also has been reported in GBM which is the most common malignant brain tumor and exhibits aggressive and invasive behavior. These reports propose that Bcl-w-induced signaling is strongly associated with aggressive characteristic of GBM. We demonstrated that Sp1 protein or mRNA expression is induced by Bcl-w using Western blotting or RT-PCR, respectively, and markedly elevated in high-grade glioma specimens compared with low-grade glioma tissues using tissue array. However, relationship between Bcl-w-related signaling and aggressive characteristic of GBM is poorly characterized. This study suggested that Bcl-w-induced Sp1 activation promoted expression of glioma stem-like cell markers, such as Musashi, Nanog, Oct4 and sox-2, as well as neurosphere formation and invasiveness, using western blotting, neurosphere formation assay, or invasion assay, culminating in their aggressive behavior. Therefore, Bcl-w-induced Sp1 activation is proposed as a putative marker for aggressiveness of GBM.

CD133 Regulates IL-1β Signaling and Neutrophil Recruitment in Glioblastoma

  • Lee, Seon Yong;Kim, Jun-Kyum;Jeon, Hee-Young;Ham, Seok Won;Kim, Hyunggee
    • Molecules and Cells
    • /
    • 제40권7호
    • /
    • pp.515-522
    • /
    • 2017
  • CD133, a pentaspan transmembrane glycoprotein, is generally used as a cancer stem cell marker in various human malignancies, but its biological function in cancer cells, especially in glioma cells, is largely unknown. Here, we demonstrated that forced expression of CD133 increases the expression of IL-$1{\beta}$ and its downstream chemokines, namely, CCL3, CXCL3 and CXCL5, in U87MG glioma cells. Although there were no apparent changes in cell growth and sphere formation in vitro and tumor growth in vivo, in vitro trans-well studies and in vivo tumor xenograft assays showed that neutrophil recruitment was markedly increased by the ectopic expression of CD133. In addition, the clinical relevance between CD133 expression and IL-$1{\beta}$ gene signature was established in patients with malignant gliomas. Thus, these results imply that glioma cells expressing CD133 are capable of modulating tumor microenvironment through the IL-$1{\beta}$ signaling pathway.

종양미세환경에서 이질적인 사이토카인에 의한 PN-MES 뇌종양줄기세포 전이 조절 (Different Cytokine Dependency of Proneural to Mesenchymal Glioma Stem Cell Transition in Tumor Microenvironments)

  • 이선용;김형기
    • 생명과학회지
    • /
    • 제29권5호
    • /
    • pp.530-536
    • /
    • 2019
  • 교모세포종은 형질 전환된 신경 교세포로부터 유래한 악성 종양이다. 교모세포종의 치료는 외과적 수술을 포함한 약물 및 방사선 치료를 통해 진행된다. 그러나 이러한 치료 과정이 환자의 예후에 크게 기여하지 못하는 실정이다. 교모세포종 치료의 어려움 중 하나로 뇌종양줄기세포의 존재를 들 수 있다. 주요하게 proneural (PN) 아형과 mesenchymal (MES) 아형으로 나누어지는 뇌종양줄기세포는 교모세포종의 발달, 유지 및 항암 치료 후 재발의 원인이 되는 암세포로 이해되고 있다. 본 연구에서는 PN 아형 뇌종양줄기세포들이 특정 사이토카인에 선택적으로 MES 아형으로 전이가 될 수 있다는 것에 중점을 두고 실험을 진행하였다. PN 아형 뇌종양줄기세포 중 GSC11 세포는 $TNF-{\alpha}$ 사이토카인에 의해, 그리고 GSC23 세포는 $TGF-{\beta}1$ 사이토카인에 노출이 될 때 MES 아형 뇌종양줄기세포의 표지 인자인 CD44의 발현 증가가 관찰되었다. 또한, Ivy Glioblastoma Atlas Project (Ivy GAP) 데이터 베이스를 통해, $TNF-{\alpha}$$TGF-{\beta}1$은 종양미세환경을 구성하는 요소 중 각각 괴사 부위와 미세혈관 주위에서 높은 발현을 보임을 확인하였다. 따라서 본 연구 결과는 PN 아형의 뇌종양줄기세포가 특정 종양미세환경에서 조절되는 다양한 종류의 사이토카인 신호에 의해 MES 아형으로의 전이가 결정될 수 있다는 가능성을 시사한다.

Anti-Cancer Effect of Ginsenoside F2 against Glioblastoma Multiforme in Xenograft Model in SD Rats

  • Shin, Ji-Yon;Lee, Jung-Min;Shin, Heon-Sub;Park, Sang-Yong;Yang, Jung-Eun;KimCho, So-Mi;Yi, Tae-Hoo
    • Journal of Ginseng Research
    • /
    • 제36권1호
    • /
    • pp.86-92
    • /
    • 2012
  • The glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. Despite combination treatments of radiation and chemotherapy, the survival periods are very short. Therefore, this study was conducted to assess the potential of ginsenoside $F_2$ (F2) to treat GBM. In in vitro experiments with glioblastoma cells U373MG, F2 showed the cytotoxic effect with $IC_{50}$ of 50 ${\mu}g/mL$ through apoptosis, confirmed by DNA condensation and fragmentation. The cell population of cell cycle sub-G1 as indicative of apoptosis was also increased. In xenograft model in SD rats, F2 at dosage of 35 mg/kg weight was intravenously injected every two days. This reduced the tumor growth in magnetic resonance imaging images. The immunohistochemistry revealed that the anticancer activity might be mediated through inhibition of proliferation judged by Ki67 and apoptosis induced by activation of caspase-3 and -8. And the lowered expression of CD31 showed the reduction in blood vessel densities. The expression of matrix metalloproteinase-9 for invasion of cancer was also inhibited. The cell populations with cancer stem cell markers of CD133 and nestin were reduced. The results of this study suggested that F2 could be a new potential chemotherapeutic drug for GBM treatment by inhibiting the growth and invasion of cancer.

Overview of Transforming Growth Factor β Superfamily Involvement in Glioblastoma Initiation and Progression

  • Nana, Andre Wendindonde;Yang, Pei-Ming;Lin, Hung-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.6813-6823
    • /
    • 2015
  • Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive of human brain tumors and has a stunning progression with a mean survival of one year from the date of diagnosis. High cell proliferation, angiogenesis and/or necrosis are histopathological features of this cancer, which has no efficient curative therapy. This aggressiveness is associated with particular heterogeneity of the tumor featuring multiple genetic and epigenetic alterations, but also with implications of aberrant signaling driven by growth factors. The transforming growth factor ${\beta}$ ($TGF{\beta}$) superfamily is a large group of structurally related proteins including $TGF{\beta}$ subfamily members Nodal, Activin, Lefty, bone morphogenetic proteins (BMPs) and growth and differentiation factor (GDF). It is involved in important biological functions including morphogenesis, embryonic development, adult stem cell differentiation, immune regulation, wound healing and inflammation. This superfamily is also considered to impact on cancer biology including that of GBM, with various effects depending on the member. The $TGF{\beta}$ subfamily, in particular, is overexpressed in some GBM types which exhibit aggressive phenotypes. This subfamily impairs anti-cancer immune responses in several ways, including immune cells inhibition and major histocompatibility (MHC) class I and II abolishment. It promotes GBM angiogenesis by inducing angiogenic factors such as vascular endothelial growth factor (VEGF), plasminogen activator inhibitor (PAI-I) and insulinlike growth factor-binding protein 7 (IGFBP7), contributes to GBM progression by inducing metalloproteinases (MMPs), "pro-neoplastic" integrins (${\alpha}v{\beta}3$, ${\alpha}5{\beta}1$) and GBM initiating cells (GICs) as well as inducing a GBM mesenchymal phenotype. Equally, Nodal promotes GICs, induces cancer metabolic switch and supports GBM cell proliferation, but is negatively regulated by Lefty. Activin promotes GBM cell proliferation while GDF yields immune-escape function. On the other hand, BMPs target GICS and induce differentiation and sensitivity to chemotherapy. This multifaceted involvement of this superfamily in GBM necessitates different strategies in anti-cancer therapy. While suppressing the $TGF{\beta}$ subfamily yields advantageous results, enhancing BMPs production is also beneficial.

Systemic Approaches Identify a Garlic-Derived Chemical, Z-ajoene, as a Glioblastoma Multiforme Cancer Stem Cell-Specific Targeting Agent

  • Jung, Yuchae;Park, Heejoo;Zhao, Hui-Yuan;Jeon, Raok;Ryu, Jae-Ha;Kim, Woo-Young
    • Molecules and Cells
    • /
    • 제37권7호
    • /
    • pp.547-553
    • /
    • 2014
  • Glioblastoma multiforme (GBM) is one of the most common brain malignancies and has a very poor prognosis. Recent evidence suggests that the presence of cancer stem cells (CSC) in GBM and the rare CSC subpopulation that is resistant to chemotherapy may be responsible for the treatment failure and unfavorable prognosis of GBM. A garlic-derived compound, Z-ajoene, has shown a range of biological activities, including anti-proliferative effects on several cancers. Here, we demonstrated for the first time that Z-ajoene specifically inhibits the growth of the GBM CSC population. CSC sphere-forming inhibition was achieved at a concentration that did not exhibit a cytotoxic effect in regular cell culture conditions. The specificity of this inhibitory effect on the CSC population was confirmed by detecting CSC cell surface marker CD133 expression and biochemical marker ALDH activity. In addition, stem cell-related mRNA profiling and real-time PCR revealed the differential expression of CSC-specific genes, including Notch, Wnt, and Hedgehog, upon treatment with Z-ajoene. A proteomic approach, i.e., reverse-phase protein array (RPPA) and Western blot analysis, showed decreased SMAD4, p-AKT, 14.3.3 and FOXO3A expression. The protein interaction map (http://string-db.org/) of the identified molecules suggested that the AKT, ERK/p38 and $TGF{\beta}$ signaling pathways are key mediators of Z-ajoene's action, which affects the transcriptional network that includes FOXO3A. These biological and bioinformatic analyses collectively demonstrate that Z-ajoene is a potential candidate for the treatment of GBM by specifically targeting GBM CSCs. We also show how this systemic approach strengthens the identification of new therapeutic agents that target CSCs.