DOI QR코드

DOI QR Code

CD133 Regulates IL-1β Signaling and Neutrophil Recruitment in Glioblastoma

  • Lee, Seon Yong (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Jun-Kyum (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Jeon, Hee-Young (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Ham, Seok Won (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Hyunggee (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
  • Received : 2017.05.30
  • Accepted : 2017.06.29
  • Published : 2017.07.31

Abstract

CD133, a pentaspan transmembrane glycoprotein, is generally used as a cancer stem cell marker in various human malignancies, but its biological function in cancer cells, especially in glioma cells, is largely unknown. Here, we demonstrated that forced expression of CD133 increases the expression of IL-$1{\beta}$ and its downstream chemokines, namely, CCL3, CXCL3 and CXCL5, in U87MG glioma cells. Although there were no apparent changes in cell growth and sphere formation in vitro and tumor growth in vivo, in vitro trans-well studies and in vivo tumor xenograft assays showed that neutrophil recruitment was markedly increased by the ectopic expression of CD133. In addition, the clinical relevance between CD133 expression and IL-$1{\beta}$ gene signature was established in patients with malignant gliomas. Thus, these results imply that glioma cells expressing CD133 are capable of modulating tumor microenvironment through the IL-$1{\beta}$ signaling pathway.

Keywords

References

  1. Brat, D.J., Castellano-Sanchez, A.A., Hunter, S.B., Pecot, M., Cohen, C., Hammond, E.H., Devi, S.N., Kaur, B., and Van Meir, E.G. (2004). Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res. 64, 920-927. https://doi.org/10.1158/0008-5472.CAN-03-2073
  2. Brescia, P., Richichi, C., and Pelicci, G. (2012). Current strategies for identification of glioma stem cells: adequate or unsatisfactory? J. Oncol. 2012, 376894.
  3. Brescia, P., Ortensi, B., Fornasari, L., Levi, D., Broggi, G., and Pelicci, G. (2013). CD133 is essential for glioblastoma stem cell maintenance. Stem Cells 31, 857-869. https://doi.org/10.1002/stem.1317
  4. Chen, K., Huang, Y.H. and Chen, J.L. (2013). Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta. Pharmacol. Sin. 34, 732-740. https://doi.org/10.1038/aps.2013.27
  5. Eash, K.J., Greenbaum, A.M., Gopalan, P.K., and Link, D.C. (2010). CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J. Clin. Invest. 120, 2423-2431. https://doi.org/10.1172/JCI41649
  6. Eramo, A., Ricci-Vitiani, L., Zeuner, A., Pallini, R., Lotti, F., Sette, G., Pilozzi, E., Larocca, L.M., Peschle, C., and De Maria, R. (2006). Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ. 13, 1238-1241. https://doi.org/10.1038/sj.cdd.4401872
  7. Griguer, C.E., Oliva, C.R., Gobin, E., Marcorelles, P., Benos, D.J., Lancaster, J.R. Jr., and Gillespie, G.Y. (2008). CD133 is a marker of bioenergetic stress in human glioma. PloS One 3, e3655. https://doi.org/10.1371/journal.pone.0003655
  8. Han, M., Guo, L., Zhang, Y., Huang, B., Chen, A., Chen, W., Liu, X., Sun, S., Wang, K., Liu, A., et al. (2016). Clinicopathological and prognostic significance of CD133 in glioma patients: A meta-analysis. Mol. Neurobiol. 53, 720-727. https://doi.org/10.1007/s12035-014-9018-9
  9. Highfill, S.L., Cui, Y., Giles, A.J., Smith, J.P., Zhang, H., Morse, E., Kaplan, R.N., and Mackall, C.L. (2014). Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci. Transl. Med. 6, 237ra67. https://doi.org/10.1126/scitranslmed.3007974
  10. Kaiser, J. (2015). The cancer stem cell gamble. Science 347, 226-229. https://doi.org/10.1126/science.347.6219.226
  11. Klonisch, T., Wiechec, E., Hombach-Klonisch, S., Ande, S.R., Wesselborg, S., Schulze-Osthoff, K., and Los, M. (2008). Cancer stem cell markers in common cancers - therapeutic implications. Trends Mol. Medicine 14, 450-460. https://doi.org/10.1016/j.molmed.2008.08.003
  12. Lathia, J.D., Mack, S.C., Mulkearns-Hubert, E.E., Valentim, C.L., and Rich, J.N. (2015). Cancer stem cells in glioblastoma. Genes Dev. 29, 1203-1217. https://doi.org/10.1101/gad.261982.115
  13. Omuro, A., and DeAngelis, L.M. (2013). Glioblastoma and other malignant gliomas: a clinical review. JAMA 310, 1842-1850. https://doi.org/10.1001/jama.2013.280319
  14. Pallini, R., Ricci-Vitiani, L., Montano, N., Mollinari, C., Biffoni, M., Cenci, T., Pierconti, F., Martini, M., De Maria, R., and Larocca, L.M. (2011). Expression of the stem cell marker CD133 in recurrent glioblastoma and its value for prognosis. Cancer 117, 162-174. https://doi.org/10.1002/cncr.25581
  15. Park, E.K., Lee, J.C., Park, J.W., Bang, S.Y., Yi, S.A., Kim, B.K., Park, J.H., Kwon, S.H., You, J.S., Nam, S.W., et al. (2015). Transcriptional repression of cancer stem cell marker CD133 by tumor suppressor p53. Cell Death Dis. 6, e1964. https://doi.org/10.1038/cddis.2015.313
  16. Pearson, M.J., Philp, A.M., Heward, J.A., Roux, B.T., Walsh, D.A., Davis, E.T., Lindsay, M.A., and Jones, S.W. (2016). Long intergenic noncoding RNAs mediate the human chondrocyte inflammatory response and are differentially expressed in osteoarthritis cartilage. Arthritis Rheumatol. 68, 845-856.
  17. Rempel, S.A., Dudas, S., Ge, S., and Gutierrez, J.A. (2000). Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin. Cancer Res. 6, 102-111.
  18. Sharma, V., Dixit, D., Ghosh, S., and Sen, E. (2011a). COX-2 regulates the proliferation of glioma stem like cells. Neurochem. Int. 59, 567-571. https://doi.org/10.1016/j.neuint.2011.06.018
  19. Sharma, V., Dixit, D., Koul, N., Mehta, V.S., and Sen, E. (2011b). Ras regulates interleukin-1beta-induced HIF-1alpha transcriptional activity in glioblastoma. J. Mol. Med. 89, 123-136. https://doi.org/10.1007/s00109-010-0683-5
  20. Soeda, A., Park, M., Lee, D., Mintz, A., Androutsellis-Theotokis, A., McKay, R.D., Engh, J., Iwama, T., Kunisada, T., Kassam, A.B., et al. (2009). Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28, 3949-3959. https://doi.org/10.1038/onc.2009.252
  21. Steele, C.W., Karim, S.A., Leach, J.D., Bailey, P., Upstill-Goddard, R., Rishi, L., Foth, M., Bryson, S., McDaid, K., Wilson, Z., et al. (2016). CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell 29, 832-845. https://doi.org/10.1016/j.ccell.2016.04.014
  22. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545-15550. https://doi.org/10.1073/pnas.0506580102
  23. Sunkin, S.M., Ng, L., Lau, C., Dolbeare, T., Gilbert, T.L., Thompson, C.L., Hawrylycz, M., and Dang, C. (2013). Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res. 41, D996-D1008.
  24. Wang, G., Lu, X., Dey, P., Deng, P., Wu, C.C., Jiang, S., Fang, Z., Zhao, K., Konaparthi, R., Hua, S., et al. (2016). Targeting YAP-dependent MDSC infiltration impairs tumor progression. Cancer Discov. 6, 80-95. https://doi.org/10.1158/2159-8290.CD-15-0224
  25. Wei, Y., Jiang, Y., Zou, F., Liu, Y., Wang, S., Xu, N., Xu, W., Cui, C., Xing, Y., Liu, Y., et al. (2013). Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc. Natl. Acad. Sci. USA 110, 6829-6834. https://doi.org/10.1073/pnas.1217002110
  26. Wu, Y. and Wu, P.Y. (2009). CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev. 18, 1127-1134. https://doi.org/10.1089/scd.2008.0338
  27. Yeung, Y.T., McDonald, K.L., Grewal, T., and Munoz, L. (2013). Interleukins in glioblastoma pathophysiology: implications for therapy. Br. J. Pharmacol. 168, 591-606. https://doi.org/10.1111/bph.12008
  28. Zahreddine, H., and Borden, K.L. (2013). Mechanisms and insights into drug resistance in cancer. Front. Pharmacol. 4, 28.
  29. Zeppernick, F., Ahmadi, R., Campos, B., Dictus, C., Helmke, B.M., Becker, N., Lichter, P., Unterberg, A., Radlwimmer, B., Herold-Mende, C.C., et al. (2008). Stem cell marker CD133 affects clinical outcome in glioma patients. Clin. Cancer Res. 14, 123-129. https://doi.org/10.1158/1078-0432.CCR-07-0932
  30. Zhang, L., Zhang, L., Li, H., Ge, C., Zhao, F., Tian, H., Chen, T., Jiang, G., Xie, H., Cui, Y., et al. (2016). CXCL3 contributes to CD133(+) CSCs maintenance and forms a positive feedback regulation loop with CD133 in HCC via Erk1/2 phosphorylation. Sci. Rep. 6, 27426. https://doi.org/10.1038/srep27426
  31. Zhu, L., Finkelstein, D., Gao, C., Shi, L., Wang, Y., Lopez-Terrada, D., Wang, K., Utley, S., Pounds, S., Neale, G., et al. (2016). Multi-organ mapping of cancer risk. Cell 166, 1132-1146. https://doi.org/10.1016/j.cell.2016.07.045

Cited by

  1. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection vol.9, pp.6, 2017, https://doi.org/10.18632/oncotarget.24102
  2. An anatomic transcriptional atlas of human glioblastoma vol.360, pp.6389, 2017, https://doi.org/10.1126/science.aaf2666