Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.5.530

Different Cytokine Dependency of Proneural to Mesenchymal Glioma Stem Cell Transition in Tumor Microenvironments  

Lee, Seon Yong (Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University)
Kim, Hyunggee (Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University)
Publication Information
Journal of Life Science / v.29, no.5, 2019 , pp. 530-536 More about this Journal
Abstract
Glioblastoma (GBM) is the most incurable brain cancer derived from the transformed glial cells. Standard anti-GBM treatment, including surgery and chemoradiotherapy, does not ensure good prognosis for the patients with GBM, because successful therapy is often impeded by presence of glioma stem cells (GSCs). GSCs, which is generally divided into proneural (PN) and mesenchymal (MES) subtype, are understood as subpopulation of cancer cells responsible for GBM initiation, progression and recurrence after standard treatments. In the present study, we demonstrate that PN subtype GSCs differentially transit to MES subtype GSCs by specific cytokines. The expression of CD44, a marker of MES subtype GSCs, was observed when GSC11 PN subtype GSCs were exposed to tumor necrosis factor alpha ($TNF-{\alpha}$) cytokine and GSC23 PN subtype GSCs were treated to transforming growth factor beta 1 ($TGF-{\beta}1$) cytokine. Ivy glioblastoma atlas project (Ivy GAP) bioinformatics database showed that $TNF-{\alpha}$ and $TGF-{\beta}1$ were highly expressed in necrotic region and perivascular region, respectively. In addition, $TNF-{\alpha}$ signaling was relatively upregulated in necrotic region, while $TGF-{\beta}$ signaling was increased in perivascular region. Taken together, our observations suggest that MES subtype GSCs can be derived from various PN subtype GSCs by multimodal cytokine stimuli provided by neighboring tumor microenvironment.
Keywords
Glioma stem cell; PN-to-MES transition; $TGF-{\beta}1$; $TNF-{\alpha}$; Tumor microenvironments;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bhat, K. P. L., Balasubramaniyan, V., Vaillant, B., Ezhilarasan, R., Hummelink, K., Hollingsworth, F., Wani, K., Heathcock, L., James, J. D., Goodman, L. D., Conroy, S. Long, L., Lelic, N., Wang, S., Gumin, J., Raj, D., Kodama, Y., Raghunathan, A., Olar, A., Joshi, K., Pelloski, C. E., Heimberger, A., Kim, S. H., Cahill, D. P., Rao, G., Den Dunnen, W. F. A., Boddeke, H. W. G. M., Phillips, H. S., Nakano, I., Lang, F. F., Colman, H., Sulman, E. P. and Aldape, K. 2013. Mesenchymal differentiation mediated by NF-${\kappa}B$ promotes radiation resistance in glioblastoma. Cancer Cell 24, 331-346.   DOI
2 Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C. and Kuperwasser, C. 2019. Phenotypic plasticity: driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell 24, 65-78.   DOI
3 Jones, C. and Baker, S. J. 2014. Unique genetic and epigenetic mechanisms driving signatures of paediatric diffuse high-grade glioma. Nat. Rev. Cancer 14, 651-661.   DOI
4 Kim, S. H., Ezhilarasan, R., Phillips, E., Gallego-Perez, D., Sparks, A., Taylor, D., Ladner, K., Furuta, T., Sabit, H., Chhipa, R., Cho, J. H., Mohyeldin, A., Beck, S., Kurozumi, K., Kuroiwa, T., Iwata, R., Asai, A., Kim, J., Sulman, E. P., Cheng, S. Y., Lee, L. J., Nakada, M., Guttridge, D., DasGupta, B., Goidts, V., Bhat, K. P. and Nakano, I. 2016. Serine/Threonine Kinase MLK4 determines mesenchymal identity in glioma stem cells in an NF-${\kappa}B$-dependent manner. Cancer Cell 29, 201-213.   DOI
5 Klonisch, T., Wiechec, E., Hombach-Klonisch, S., Ande, S. R., Wesselborg, S., Schulze-Osthoff, K. and Los, M. 2008. Cancer stem cell markers in common cancers - therapeutic implications. Trends Mol. Med. 14, 450-460.   DOI
6 Lathia, J. D., Mack, S. C., Mulkearns-Hubert, E. E., Valentim, C. L. and Rich, J. N. 2015. Cancer stem cells in glioblastoma. Genes Dev. 29, 1203-1217.   DOI
7 Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., Scheithauer, B. W. and Kleihues, P. 2007. The 2007 WHO classification of tumours of the central nervous system. Acta. Neuropathol. 114, 97-109.   DOI
8 Lu, Y., Jiang, F., Zheng, X., Katakowski, M., Buller, B., To, S. S. and Chopp, M. 2011. TGF-${\beta}1$ promotes motility and invasiveness of glioma cells through activation of ADAM17. Oncol. Rep. 25, 1329-1335.
9 Phillips, H. S., Kharbanda, S., Chen, R., Forrest, W. F., Soriano, R. H., Wu, T. D., Misra, A., Nigro, J. M., Colman, H., Soroceanu, L., Williams, P. M., Modrusan, Z., Feuerstein, B. G. and Aldape, K. 2006. Molecular subclasses of highgrade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 153-173.   DOI
10 Mao, P., Joshi, K., Li, J., Kim, S. H., Li, P., Santana-Santos, L., Luthra, S., Chandran, U. R., Benos, P. V., Smith, L., Wang, M., Hu, B., Cheng, S. Y., Sobol, R. W. and Nakano, I. 2013. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc. Natl. Acad. Sci. USA. 110, 8644-8649.   DOI
11 Zhou, B. B., Zhang, H., Damelin, M., Geles, K. G., Grindley, J. C. and Dirks, P. B. 2009. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat. Rev. Drug Discov. 8, 806-823.   DOI
12 Segerman, A., Niklasson, M., Haglund, C., Bergstrom, T., Jarvius, M., Xie, Y., Westermark, A., Sonmez, D., Hermansson, A., Kastemar, M., Naimaie-Ali, Z., Nyberg, F., Berglund, M., Sundstrom, M., Hesselager, G., Uhrbom, L., Gustafsson, M., Larsson, R., Fryknas, M., Segerman, B. and Westermark, B. 2016. Clonal variation in drug and radiation response among glioma-initiating cells is linked to proneural- mesenchymal transition. Cell Rep. 17, 2994-3009.   DOI
13 Shah, N., Feng, X., Lankerovich, M., Puchalski, R. B. and Keogh, B. 2016. Data from Ivy GAP. The Cancer Imaging Archive.
14 Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., Belanger, K., Brandes, A. A., Marosi, C., Bogdahn, U., Curschmann, J., Janzer, R. C., Ludwin, S. K., Gorlia, T., Allgeier, A., Lacombe, D., Cairncross, J. G., Eisenhauer, E. and Mirimanoff, R. O.; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. 2005. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987-996.   DOI
15 Verhaak, R. G., Hoadley, K. A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M. D., Miller, C. R., Ding, L., Golub, T., Mesirov, J. P., Alexe, G., Lawrence, M., O'Kelly, M., Tamayo, P., Weir, B. A., Gabriel, S., Winckler, W., Gupta, S., Jakkula, L., Feiler, H. S., Hodgson, J. G., James, C. D., Sarkaria, J. N., Brennan, C., Kahn, A., Spellman, P. T., Wilson, R. K., Speed, T. P., Gray, J. W., Meyerson, M., Getz, G., Perou, C. M. and Hayes, D. N.; Cancer Genome Atlas Research Network. 2010. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98-110.   DOI
16 Yin, J., Oh, Y. T., Kim, J. Y., Kim, S. S., Choi, E., Kim, T. H., Hong, J. H., Chang, N., Cho, H. J., Sa, J. K., Kim, J. C., Kwon, H. J., Park, S., Lin, W., Nakano, I., Gwak, H. S., Yoo, H., Lee, S. H., Lee, J., Kim, J. H., Kim, S. Y., Nam, D. H., Park, M. J. and Park, J. B. 2017. Transglutaminase 2 Inhibition Reverses Mesenchymal Transdifferentiation of Glioma Stem Cells by Regulating C/$EBP{\beta}$ Signaling. Cancer Res. 77, 4973-4984.   DOI