• 제목/요약/키워드: glass-glass bonding

검색결과 431건 처리시간 0.027초

실리콘 기판과 ITO가 코팅된 #7059 유리 기판간의 정전 열 접합 (Electrostatic bonding between Si and ITO-coated #7059 glass substrates)

  • 주병권;정회환;김영조;한정인;조경익;오명환
    • 센서학회지
    • /
    • 제7권3호
    • /
    • pp.211-217
    • /
    • 1998
  • #7740 interlayer를 적용하여 Si 기관과 ITO가 코팅된 #7059 기판을 정전 열 접합하였다. SIMS 분석을 통하여 #7740 interlayer 내에 존재하는 $Na^{+}$ 이온들의 열-전기적 이동이 접합 메카니즘으로 작용함을 확인하였다. 우수한 접합을 얻기 위한 온도 및 전압 범위는 각각 $180{\sim}200^{\circ}C$ and $50{\sim}70V_{dc}$(10분)으로 나타났다. 이러한 저온 Si-ITO 코팅 유리 간의 접합 공정은 전계 방출 표시 소자의 패키징에 유용하게 이용될 수 있을 것으로 기대된다.

  • PDF

Primer Bonding agent, 복합레진 내의 볼소의 법랑질에 대한 항우식 작용 (THE ANTICARIOGENIC EFFECT OF F IN PRIMER, BONDING AGENT AND COMPOSITE RESIN IN THE CAVOSURFACE ENAMEDL AREA)

  • 박성호
    • Restorative Dentistry and Endodontics
    • /
    • 제21권2호
    • /
    • pp.635-641
    • /
    • 1996
  • This study was designed to evaluate the anti cariogenic effect of F in primers, bonding agents, composite resins or glass ionomer cements in enamel. Twenty-five extracted teeth were selected and a cavity was prepared on either the buccal or the lingual surface of each tooth. After pumicing and etching, the samples were divided into 5 groups. In group A, the samples were primed, bonded and filled with ART bond and Brilliant Enamel (Coltene, Switzerland). Group B composed of Optibond and Herculited XRV (Kerr, USA), group C composed of Syntac and Tetric(Vivadent, Lichtenstein), and group D composed of Scotch-bond Multipurpose and Z 100 (3M, YSA). In group E, the samples were filled with glass ionomer cement (Fuji II LC, Japan), All surfaces except the 2mm beyond the cavosurface margin of the sample were protected, and samples were then put into an acid buffer for 3 days to develop the initial caries. The samples were then sectioned through the filling body into thin wafers and then examined with a polarizing microscope under water imbibition. The fluoride in primer, bonding agent, or composite filling material did not prevent the initial caries in the enamel area adjacent to the filling body whereas the fluoride in the glass ionomer did prevent the initial stage caries.

  • PDF

대면적 정전 접합 장치 고안 및 Si과 Glass 접합에 미치는 불순물의 영향 (Design of Electrostatic Bonding Equipment for Large Area and the Effect of Contamination Particle on the Si-glass Electrostatic Bonding)

  • 문제도
    • 한국재료학회지
    • /
    • 제6권1호
    • /
    • pp.3-11
    • /
    • 1996
  • 대면적 정전 접합 장치를 고안 및 제작하여 Si과 glass를 정전 접합시켰다. 여러 온도에서 정전 접합 후 접합 면적을 측정하였으며 접합이 이루어진 경우 그 접합 면적이 90%를 넘었다. 접합시 전류를 측정하여 접합 강도와의 관계를 살펴보였다. 잔류 공공을 생성시키는 원인은 재료의 표면 거칠기 차이나 전극의 모양보다는 불순물 입자에 의한 것임이 밝혀졌고 같은 크기의 불순물 입자에 대한 공공의 크기는 접합 온도가 높을수록 감소하였다. 정전 접합에 미치는 불순물의 영향을 공공의 크기 및 불순물 입자의 크기를 측정하여 살펴보았다.

  • PDF

저융점유리와 각종금속과의 봉착기구에 있어서 금속산화물의 역할 (Role of Added Metal Oxide in the Adherence Mechanism of Low Melting Glass to Several Metal Seals)

  • 정창주
    • 한국세라믹학회지
    • /
    • 제11권1호
    • /
    • pp.3-9
    • /
    • 1974
  • The role of added metal oxide in the adherence mechanism of low melting glass to several metal plates such as oxygen free high conducting copper, low carbon steel, chrominum galvanized on copper, and stainless steel was investigated. The metal oxide which added to glass were cupric oxide, ferric oxide, chromic oxide, and stainless steel oxide. The glass to that various metla oxide were added, sealed with several metal plates in the electric furnace at $650^{\circ}C$ for 5 minutes. The results as follows; 1) The interfacial reaction was promoted and strong chemical bonding with glass and metals by which the surface energy was decreased showed excellent sealing by addition of metal oxide. 2) When the interfacial reaction of glass and metals was promoted by addition of metal oxide found out that various adhernece mechanism were related to the sealing. 3) When the amount of metal oxide addition was 3-5% the excellent sealing was achieved.

  • PDF

마그네틱 펄스 용접 및 성형기공 (Magnetic Pulse Solutions)

  • 박삼수
    • 한국레이저가공학회:학술대회논문집
    • /
    • 한국레이저가공학회 2006년도 추계학술발표대회 논문집
    • /
    • pp.53-81
    • /
    • 2006
  • A COG(Chip on Glass) bonding process that is one of display packaging technology and bonds between driver IC chip and a glass panel using ACF(Anisotropic Conductive Film)has been investigated by using diode laser. This method is possible to raise cure temperature of ACF within one second and can reduce the total process time for COG bonding by a conventional method such as a hot plate. Also we can get good pressure mark on the surface of electrodes and higher bonding strength than that by convention method. Results show that laser COG bonding can give low pressure bonding and decrease a warpage of panel. We believe that it can be applied to fine pitch module.

  • PDF

정전 열 접합을 이용한 FED 스페이서의 초청정 정렬/탑재 공정 개발 (Development of Ultra-Clean Aligning/Mounting Process of FED Spacers using Electrostatic Bonding)

  • 주병권;강문식;이윤희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권11호
    • /
    • pp.635-639
    • /
    • 2000
  • In this paper, a new idea about ultra-clean aligning and mounting method of FED spacers was introduced. The glass-to -glass electrostatic bonding process was employed in order to bond the micro-structures of spacers to black matrix area formed on an FED anode substrate. It is possible to get adhesive-free bonding interface and well-aligned spacer array on an FED anode substrate with a ${\pm}5{\mu}m$ accuracy. Finally, I inch-sized FED panel was demonstrated to make sure of its applicability to FED panel fabrication.

  • PDF

치과 임플란트용 bioactive 세라믹 복합재료의 제조와 미세조직 (Microstructure and Processing of Bioactive Ceramic Composites as Dental Implants)

  • 김부섭
    • 대한치과기공학회지
    • /
    • 제25권1호
    • /
    • pp.21-28
    • /
    • 2003
  • The purpose of this study was to process bio-active glass ceramic composite, reinforced with sapphire fibers, by hot press. Also to study the interface of the matrix and the sapphire fiber, and the mechanical properties. Glass raw materials melted in Pt crucible at 1300$^{\circ}C$ during 3.5 hours. The melt was crushed in ball mill and then crushed material, ground and sieved to $<40{\beta}{\mu}m$. Sapphire fibers cut (30mm) and aligned. Powder and fibers hot pressed. The micrographs show good bonding between the matrix and the fiber and no porosity in the glass matrix. This means ideal fracture phenomena. Glass is fractured before the fiber. This is indication of good fracture strength. EDXS showing aluminum rich phase and crystalline phase. Bright field image of the matrix showing crystalline phase. Also diffraction pattern of TEM showing the crystalline phase and more than one phase. Strength of the samples was determined by 3 point bend testing. Strength of the 10vol% sample was approximately 69MPa, while strength of the control sample is 35MPa. Conclusions through this study as follow: 1. Micrographs show no porosity in the glass matrix and the interface. 2. The interface between the fiber and the glass matrix show no gaps. 3. Fracture of the glass indicates characteristic fiber-matrix separation. 4. Presence of crystalline phase at high processing temperature. 5. Sapphire is compatible with bioactive glass.

  • PDF

Properties of Glass-Ceramics in the System CaO-TiO2-SiO2 with the Additives of Al2O3, ZrO2 and B2O3 for Use in the Solid Oxide Fuel Cells.

  • Lee, Jun-Suk;Park, Min-Jin;Shin, Hyun-Ick;Lee, Jae-Chun
    • The Korean Journal of Ceramics
    • /
    • 제5권4호
    • /
    • pp.336-340
    • /
    • 1999
  • Glasses in the system $CaO-TiO_2-SiO_2-Al_2O_3-ZrO_2-B_2O_3$ were investigated to find the glass seal compositions suitable for use in the planar solid oxide fuel cell (SOFC). Glass-ceramics prepared from the glasses by one-stage heat treatment at $1,000^{\circ}C$ showed various thermal expansion coefficients (i,e., $8.6\times10^{-6^{\circ}}C^{-1}$ to $42.7\times10^{-6^{\circ}}C^{-1}$ in the range 25-$1,000^{\circ}C$) due to the viscoelastic response of glass phase. The average values of contact angles between the zirconia substrate and the glass particles heated at 1,000-$1,200^{\circ}C$ were in the range of $131^{\circ}\pm4^{\circ}$~$137^{\circ}\pm9^{\circ}$, indicating that the glass-ceramic was in partial non-wetting condition with the zirconia substrate. With increasing heat treatment time of glass samples from 0.5 to 24 h at $1,100^{\circ}C$, the DC electrical conductivity of the resultant glass-ceramics decreased from at $800^{\circ}C$. Isothermal hold of the glass sample at $1100^{\circ}C$ for 48h resulted in diffusion of Ca, Si, and Al ions from glass phase into the zirconia substrate through the glass/zirconia bonding interface. Glass phase and diffusion of the moving ion such as $Ca^{2+}$ in glass phase is responsible for the electrical conduction in the glass-ceramics.

  • PDF

Pb 금속필러가 첨가된 PbO-Bi2O3-B2O3-ZnO-SiO2계 유리의 특성 (Characteristics of the PbO-Bi2O3-B2O3-ZnO-SiO2 Glass System Doped with Pb Metal Filler)

  • 최진삼;정대용;신동우;배원태
    • 한국세라믹학회지
    • /
    • 제50권3호
    • /
    • pp.238-243
    • /
    • 2013
  • We investigated the effect of Pb-metal filler added to a hybrid paste(PbO-$Bi_2O_3-B_2O_3$-ZnO glass frit and Pb-powder), for joining flip-chip sat lower temperatures than normal. The glass transition temperature was detected at $250^{\circ}C$ and the softening point occurred at $330^{\circ}C$. As the temperature increased, the specific density decreased due to the volatility of the Pb-metal and boron component in the glass. When the glass was heat-treated at $350^{\circ}C$ for 5 min, XRD results revealed a crystalline $Pb_4Bi_3B_7O_{19}$ phase that had been initiated by the addition of Pb-filler in the hybrid paste. The addition of the Pb-metal filler caused are action between the Pb-metal and glass that accelerated the formation of the liquid phase. The liquid phase that formed, promoted bonding between the flip-chip substrate sat lower temperature.

Tensile strength of bilayered ceramics and corresponding glass veneers

  • Anunmana, Chuchai;Champirat, Tharee;Jirajariyavej, Bundhit
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권3호
    • /
    • pp.151-156
    • /
    • 2014
  • PURPOSE. To investigate the microtensile bond strength between two all-ceramic systems; lithium disilicate glass ceramic and zirconia core ceramics bonded with their corresponding glass veneers. MATERIALS AND METHODS. Blocks of core ceramics (IPS e.max$^{(R)}$ Press and Lava$^{TM}$ Frame) were fabricated and veneered with their corresponding glass veneers. The bilayered blocks were cut into microbars; 8 mm in length and $1mm^2$ in cross-sectional area (n = 30/group). Additionally, monolithic microbars of these two veneers (IPS e.max$^{(R)}$ Ceram and LavaTM Ceram; n = 30/group) were also prepared. The obtained microbars were tested in tension until fracture, and the fracture surfaces of the microbars were examined with fluorescent black light and scanning electron microscope (SEM) to identify the mode of failure. One-way ANOVA and the Dunnett's T3 test were performed to determine significant differences of the mean microtensile bond strength at a significance level of 0.05. RESULTS. The mean microtensile bond strength of IPS e.max$^{(R)}$ Press/IPS e.max$^{(R)}$ Ceram ($43.40{\pm}5.51$ MPa) was significantly greater than that of Lava$^{TM}$ Frame/Lava$^{TM}$ Ceram ($31.71{\pm}7.03$ MPa)(P<.001). Fluorescent black light and SEM analysis showed that most of the tested microbars failed cohesively in the veneer layer. Furthermore, the bond strength of Lava$^{TM}$ Frame/Lava$^{TM}$ Ceram was comparable to the tensile strength of monolithic glass veneer of Lava$^{TM}$ Ceram, while the bond strength of bilayered IPS e.max$^{(R)}$ Press/IPS e.max$^{(R)}$ Ceram was significantly greater than tensile strength of monolithic IPS e.max$^{(R)}$ Ceram. CONCLUSION. Because fracture site occurred mostly in the glass veneer and most failures were away from the interfacial zone, microtensile bond test may not be a suitable test for bonding integrity. Fracture mechanics approach such as fracture toughness of the interface may be more appropriate to represent the bonding quality between two materials.