• Title/Summary/Keyword: glass-ceramic

Search Result 1,308, Processing Time 0.026 seconds

Investigation of Color Mecchanism in Co-Doped Augite Purple for Color Glaze (Co-Doped Augite 보라색 유약의 발색기구)

  • Kwon, Young-Joo;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.271-275
    • /
    • 2013
  • Cobalt (Co) compounds have been used for centuries to impart rich blue color to glass, glazes and ceramics. Cobalt monoxide (CoO), an oxide of Co, is an inorganic compound that has long been used as a coloring agent in the ceramic industry. Unlike other coloring agents, CoO can be used to develop colors other than blue, and several factors such as its concentration in the glaze and firing condition have been suggested as possible mechanisms. For example, CoO produces a typical blue color called "cobalt blue" at very low concentrations such as 1 wt% in both oxidation and reduction firing conditions; a higher concentration of CoO (5 wt%) develops a darker blue color under the same firing conditions. Interestingly, CoO also develops a purple color at high concentrations above 10 wt%. In this study, we examined the applicability and mechanism of a novel purple glaze containing cobalt(II, III) oxide, one of the well characterized cobalt oxides. Experimental results show that an Augite crystal isoform (Augite-Fe/Co) in which Fe was replaced with Co is the main component contributing to the formation of the purple color. Based on these results, we developed a glaze using chemically synthesized Augite-Fe/Co crystal as a color pigment. Purple color glaze was successfully developed by the addition of 6~15 wt% of $Co_3O_4$ to magnesia lime.

Effects of Al-doping on IZO Thin Film for Transparent TFT

  • Bang, J.H.;Jung, J.H.;Song, P.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.207-207
    • /
    • 2011
  • Amorphous transparent oxide semiconductors (a-TOS) have been widely studied for many optoelectronic devices such as AM-OLED (active-matrix organic light emitting diodes). Recently, Nomura et al. demonstrated high performance amorphous IGZO (In-Ga-Zn-O) TFTs.1 Despite the amorphous structure, due to the conduction band minimum (CBM) that made of spherically extended s-orbitals of the constituent metals, an a-IGZO TFT shows high mobility.2,3 But IGZO films contain high cost rare metals. Therefore, we need to investigate the alternatives. Because Aluminum has a high bond enthalpy with oxygen atom and Alumina has a high lattice energy, we try to replace Gallium with Aluminum that is high reserve low cost material. In this study, we focused on the electrical properties of IZO:Al thin films as a channel layer of TFTs. IZO:Al were deposited on unheated non-alkali glass substrates (5 cm ${\times}$ 5 cm) by magnetron co-sputtering system with two cathodes equipped with IZO target and Al target, respectively. The sintered ceramic IZO disc (3 inch ${\phi}$, 5 mm t) and metal Al target (3 inch ${\phi}$, 5 mm t) are used for deposition. The O2 gas was used as the reactive gas to control carrier concentration and mobility. Deposition was carried out under various sputtering conditions to investigate the effect of sputtering process on the characteristics of IZO:Al thin films. Correlation between sputtering factors and electronic properties of the film will be discussed in detail.

  • PDF

Effect of Constituent Ration NiO, CuO and B-Bi-Zn Addition on the Permeabilities of Hexagonal-ferrite (NiO, CuO 조성비와 B-Bi-Zn 첨가가 Hexagonal-Ferrite의 투자율에 미치는 영향)

  • Jeong, Seung-U;Kim, Tae-Won;Jeon, Seok-Tae;Myeong, Tae-Ho;Myeong, Tae-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.430-436
    • /
    • 2000
  • In this paper, we have studied the effect of constituent ratio NiO, CuO and doped with B-Bi-Zn on proper-ties(microstructure, density, shrinkage, permeability as a function of frequency, etc.) of hexagonal-ferrite for high fre- quency chip-inductor material about several GHz. The permeability were analyzed by impedance analyzer(100 kHz∼ 40 MHz) and network analyzed(30 MHz∼3 GHz). As a result of the characteristics. the B-Bi-Zn glass ceramic was used to lower the sintering temperature for additive as function of frequency from 100kHz to 1.8 GHz showed con-stant tends. The maximum imaginary value of complex permeability was observed near the resonance frequency of 2 GHz.

  • PDF

Comparative analysis of transmittance for different types of commercially available zirconia and lithium disilicate materials

  • Harianawala, Husain Hatim;Kheur, Mohit Gurunath;Apte, Sanjay Krishnaji;Kale, Bharat Bhanudas;Sethi, Tania Sanjeev;Kheur, Supriya Mohit
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.456-461
    • /
    • 2014
  • PURPOSE. Translucency and colour stability are two most important aspects for an aesthetic dental restoration. Glass ceramic restorations are popular amongst clinicians because of their superior aesthetic properties. In the last decade, zirconia has generated tremendous interest due to its favorable mechanical and biological properties. However, zirconia lacks the translucency that lithium disilicate materials possess and therefore has limitations in its use, especially in esthetically demanding situations. There has been a great thrust in research towards developing translucent zirconia materials for dental restorations. The objective of the study was to evaluate and compare the transmittance of a translucent variant of zirconia to lithium disilicate. MATERIALS AND METHODS. Two commercially available zirconia materials (conventional and high translucency) and 2 lithium disilicate materials (conventional and high translucency) with standardized dimensions were fabricated. Transmittance values were measured for all samples followed by a microstructural analysis using a finite element scanning electron microscope. One way analysis of variance combined with a Tukey-post hoc test was used to analyze the data obtained (P=.05). RESULTS. High translucency lithium disilicate showed highest transmittance of all materials studied, followed by conventional lithium disilicate, high translucency zirconia and conventional zirconia. The difference between all groups of materials was statistically significant. The transmittance of the different materials correlated to their microstructure analysis. CONCLUSION. Despite manufacturers' efforts to make zirconia significantly more translucent, the transmittance values of these materials still do not match conventional lithium disilicate. More research is required on zirconia towards making the material more translucent for its potential use as esthetic monolithic restoration.

Characterization of the Stress in the Luting Cement layer Influenced by Material Properties of Full Veneer Crown (전부피개관의 물성과 시멘트의 물성이 시멘트 내부의 응력에 미치는 영향)

  • Lee, Jun-Young;Lee, Kyu-bok;Lee, Chung-Hee;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • The objective of this study was to test the effects of crown material, cement type, the direction in which stress is applied and distribution of luting cement that might lead to cement microfracture using 2D Finite Element Method. Twenty three finite element models with a chamfer margin configuration were generated for a mandibular first molar. Crown models exhibited four crown materials: type 3 gold alloy, Ni-Cr alloy, ceramic and composite resin, and two luting cements: zinc phosphate and glass ionomer cements with a thicknesses of $70{\mu}m$. Modeled crowns were loaded axially or obliquely at unit load of 1 N. Areas and levels of stress concentrations within the cement were determined. Stress in the cement layer at the margins of crowns were higher than those in the area away from the margin. Stress under oblique loads were much higher than under axial load. The stiffer crown material produced higher stress and similarly, higher stress were found in cements with the greater Young's modulus.

Performance Evaluation of Selective Coatings for Solar Thermal Collectors (태양열 집열기에 사용될 선택흡수막의 성능 평가)

  • Lee, Kil-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.43-50
    • /
    • 2012
  • Metal-metal oxide (M-M oxide) cermet solar selective coatings with a double cermet layer film structure were deposited on the Al-deposited glass substrate by using a directed current (DC) magnetron sputtering technology. M oxide (CrO and ZrO) was used as the ceramic component in the cermets, and Cr and Zr used as the metallic components. In addition, black Cr (Cr-$Cr_2O_3$ cermet) solar selective coatings were deposited on the Ni-plated Cu substrate by using a electroplating method for comparison. The thermal stability tests were carried out for performance evaluation of solar coatings. Reflectance measurements were used to evaluate both solar absorptance(${\alpha}$) and thermal emittance (${\epsilon}$) of the solar coatings before and after thermal testing by using a spectrometer. Optical properties of optimized cermet solar coatings were ${\alpha}{\simeq}0.94-0.96$ and ${\epsilon}{\simeq}0.1$ ($100^{\circ}C$). The results of thermal stability test of M-M oxide solar coatings showed that the Cr-CrO cermet solar selective coatings were more stable than the Zr-ZrO cermet selective coatings at temperature of both $400^{\circ}C$ in air and $450^{\circ}C$ in vacuum. The black Cr solar selective coatings were degraded in air at temperature of $400^{\circ}C$. The main optical degradation modes of these coatings were diffusion of metal atoms, and oxidation.

La0.8Ca0.2CrO3 Interconnect Materials for Solid Oxide Fuel Cells: Combustion Synthesis and Reduced-Temperature Sintering

  • Park, Beom-Kyeong;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.39-44
    • /
    • 2011
  • Sub-micrometer $La_{0.8}Ca_{0.2}CrO_3$ powders for ceramic interconnects of solid oxide fuel cells were synthesized by the aqueous combustion process. The materials were prepared from the precursor solutions with different glycine (fuel)-to-nitrate (oxidant) ratios (${\phi}$). Single-phase $La_{0.8}Ca_{0.2}CrO_3$ powders with a perovskite structure were obtained after combustion when ${\phi}$ was equal to or larger than 0.480. Especially, the stoichiometric precursor with ${\phi}$ = 0.555 yielded the spherical $La_{0.8}Ca_{0.2}CrO_3$ particles with 150-250 nm diameters after calcination at $1000^{\circ}C$. When compared with the powders synthesized by the solid-state reaction, the combustion-derived, fine powders exhibited improved sinterability, leading to near-full densification at $1400^{\circ}C$ in oxidizing atmospheres. Moreover, a small quantity of glass additives was used to reduce the sintering temperature, and considerable densification was indeed achieved at temperatures as low as $1100^{\circ}C$.

Effects of Sputtering Condition on Structural Properties of PZT Thin Films on LTCC Substrate by RF Magnetron Sputtering (저온동시소성세라믹 기판 위에 제작된 PZT 박막의 증착조건이 박막의 구조적 특성에 미치는 영향)

  • Lee, Kyung-Chun;Hwang, Hyun-Suk;Lee, Tae-Yong;Hur, Won-Young;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.297-302
    • /
    • 2011
  • Recently, low temperature co-fired ceramic (LTCC) technology is widely used in sensors, actuators and microsystems fields because of its very good electrical and mechanical properties, high reliability and stability as well as possibility of making 3D micro structures. In this study, we investigated the effects of sputtering gas ratio and annealing temperature on the crystal structure of $Pb(ZrTi)O_3$ (PZT) thin films deposited on LTCC substrate. The LTCC substrate with thickness of $400\;{\mu}m$ were fabricated by laminating 4 green tapes which consist of alumina and glass particle in an organic binder. The PZT thin films were deposited on Pt / Ti / LTCC substrates by RF magnetron sputtering method. The results showed that the crystallization of the films were enhanced as increasing $O_2$ mixing ratio. At about 25% $O_2$ mixing ratio, was well crystallized in the perovskite structure. PZT thin films was annealed at various temperatures. When the annealing temperature is lower, the PZT thin films become a phyrochlore phase. However, when the annealing temperature is higher than $600^{\circ}C$, the PZT thin films become a perovskite phase. At the annealing temperature of $700^{\circ}C$, perovskite PZT thin films with good quality structure was obtained.

Performance Evaluation of Dicing Sawing of High-densified Al2O3 Bulk using Diamond Electroplated Band-saw Machine (다이아몬드전착 밴드쏘우장비를 이용한 고치밀도 알루미나소결체의 다이싱가공 성능평가)

  • Lee, Yong-Moon;Park, Young-Chan;Kim, Dong-Hyun;Lee, Man-Young;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-6
    • /
    • 2017
  • Recently, the brittle materials such as ceramics, glass, sapphire and textile material have been widely used in semiconductors, aerospace and automobile owing to high functional characteristics. On the other hand, it has the characteristics of difficult-to-cut material relative to all materials. In this study, diamond electro-deposited band-saw machine was developed to operate stably using water-coolant type through relative motion between band-saw tool and $Al_2O_3$ material. High densified $Al_2O_3$ material was manufactured by spark plasma sintering method. The bulk density was observed by the Archimedes law and the theoretical density was estimated to be $3.88g/cm^3$ and its hardness 14.7 MPa. From the dicing sawing test of $Al_2O_3$ specimen, behavior of surface roughness and band-saw wear are dominantly affected by the increase of the band-saw linear velocity. Additionally, an continuous pattern type of diamond band-saw was a very effective due to entry impact as a one-off for brittle material.

Surface Analysis of Fluorine-Plasma Etched Y-Si-Al-O-N Oxynitride Glasses

  • Lee, Jung-Ki;Hwang, Seong-Jin;Lee, Sung-Min;Kim, Hyung-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.38.1-38.1
    • /
    • 2009
  • Plasma etching is an essential process for electronic device industries and the particulate contamination during plasma etching has been interested as a big issue for the yield of productivity. The oxynitride glasses have a merit to prevent particulate contamination due to their amorphous structure and plasma etching resistance. The YSiAlON oxynitride glasses with increasing nitrogen content were manufactured. Each oxynitride glasses were fluorine-plasma etched and their plasma etching rate and surface roughness were compared with reference materials such as sapphire, alumina and quartz. The reinforcement mechanism of plasma etching resistance of the YSiAlON glasses studied by depth profiling at plasma etched surface using electron spectroscopy for chemical analysis. The plasma etching rate decreased with nitrogen content and there was no selective etching at the plasma etched surface of the oxynitride glasses. The concentration of silicon was very low due to the generation of SiF4 very volatile byproduct and the concentration of aluminum and yttrium was relatively constant. The elimination of silicon atoms during plasma etching was reduced with increasing nitrogen content because the content of the nitrogen was constant. And besides, the concentration of oxygen was very low on the plasma etched surface. From the study, the plasma etching resistance of the glasses may be improved by the generation of nitrogen related structural groups and those are proved by chemical composition analysis at plasma etched surface of the YSiAlON oxynitride glasses.

  • PDF