• Title/Summary/Keyword: glass transition region

Search Result 80, Processing Time 0.021 seconds

A Viscoelastic Study of Glass Transition and Degradation Processes of Phenolic Resin/Carbon Fiber Composites (페놀수지/탄소섬유 열경화성 복합재료의 유리전이와 고온 분해과정에서 관찰되는 점탄성 특성 연구)

  • ;J. C. Seferis
    • The Korean Journal of Rheology
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 1999
  • Viscoelastic characteristics of cured phenolic resin/carbon fiber composite materials were investigated through glass transition and degradation reaction processes in the high temperature region up to $400^{\circ}C$. A typical glass transition of the cross-linked thermoset polymer was followed by irreversible degradation reactions, which were exhibited by the increasing storage modulus and loss modulus peak. A degradation master curve was constructed by using the vertical and horizontal shift factors, both of which complied well with the Arrhenius equation in light of the kinetic expression of degradation rate constants. Using an analogy to the Havriliak-Negami equation in dielectric relaxation phenomena, a viscoelastic modeling methodology was developed to characterize the frequency- and temperature-dependent complex moduli of the degrading thermoset polymer composite systems. The temperature-dependent relaxation time of the degrading composites was determined in a continuous fashion and showed a minimum relaxation time between the glass transition and degradation reaction regions. The capability of the developed modeling methodology was demonstrated by describing the complex behavior of the viscoelastic complex moduli of reacting phenolic resin composite systems.

  • PDF

Glass Forming Stability in Chalcogenide-based GeSbSe Materials for IR-Lens (적외선 렌즈용 Ge-Sb-Se계 칼코게나이드의 유리안정성 평가)

  • Jung, Gun-Hong;Kong, Heon;Yeo, Jong-Bin;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.204-209
    • /
    • 2017
  • Thermal and structural stability in the glass transition region of chalcogenide glasses has been investigated in terms of thermodynamics for application to various optoelectronic devices. In this study, the compositions of $Ge_xSb_{20}Se_{80-x}$ (x = 10, 15, 20, 25, and 30) were selected to investigate the glass stability according to germanium ratios. The chalcogenide bulks were fabricated by using a traditional melt-quenching method. Thin films were deposited by a thermal evaporation system, maintaining the deposition ratio of $3{\sim}5{\AA}$ in order to have uniformity. The thermal and structural properties were measured by a differential scanning calorimeter (DSC) and X-ray diffraction (XRD). The DSC analysis provided thermal parameters and theoretical glass region stabilities. The XRD analysis supported the theoretical stabilities because of where the crystallization peak data occurred.

A study on hysteresis and temperature properties of VDF/TrFe copolymer (VDF/TrFE 공중합체의 히스테리시스 및 온도특성)

  • 방태찬;김종경;강대하
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.156-165
    • /
    • 1997
  • D-E hysteresis loops have been measured for the 65/35 mole % copolymer of vinylidene fluoride and trifluoroethylene over wide temperature range. The remanent polarization and the coercive field at room temperature were estimated to be 75 mC/m$^{2}$ and 55 MV/m respectively. D-E hysteresis loops were observed even below the glass transition temperature(-20.deg. C) and the remanent polarization and the coercive field were larger, as the temperature lower. It seems that the remanent polarization and the coercive field depend on the amorphous region as well as crystalline region in this copolymer. And the ferroelectric-to-paraelectric phase transition was observed at 90.deg. C on heating and 80'C on cooling. Double hysteresis loops were observed at the temperature(85.deg. C) of paraelectric phase.

  • PDF

The Influence of (Pd+Ag) Additions on the Glass Forming Ability of Zr-Al-Cu-Ni based Alloys (Zr-Al-Cu-Ni계 합금의 비정질형성능에 미치는 Pd과 Ag 복합첨가의 영향)

  • Kim, Mi-Hye;Lee, Byung-Woo;Kim, Sung-Gyu;Bae, Cha-Hurn;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.24 no.1
    • /
    • pp.40-44
    • /
    • 2004
  • The influence of Pd and Ag additions on the thermal stability, the glass forming ability (GFA) and mechanical property of $Zr_{55}Al_{10}Cu_{20}Ni_{10}Pb_{(5-x)}Ag_x$ (x = $0{\sim}5at%$) alloys obtained by melt spun and injection casting method have been investigated by using of X-ray diffraction, thermal analysis (DTA, DSC) and micro-Vickers hardness(Hv) testing. The thermal properties of melt-spun $Zr_{55}Al_{10}Cu_{20}Ni_{10}Pb_{(5-x)}Ag_x$ (x = $0{\sim}5at%$) alloys exhibit a supercooled liquid region(${\Delta}T_x$) exceeding 91 K before crystallization. The largest ${\Delta}T_x$ reaches as large as 126 K for the $Zr_{55}Al_{10}Cu_{20}Ni_{10}Pb_5$ alloy. The reduced glass transition temperature, $T_{rg}$ increased with increasing Ag content. The largest $T_{rg}$ is obtained for the $Zr_{55}Al_{10}Cu_{10}Ni_{10}Ag_5$ alloy. The $Zr_{55}Al_{10}Cu_{10}Ni_{10}Ag_5$ bulk amorphous alloy rod with 3 mm in diameter was fabricated by injection casting. Hv increased with increasing Ag content and the largest value was obtained for the $Zr_{55}Al_{10}Cu_{10}Ni_{10}Ag_5$ bulk amorphous alloy.

Properties of Multicomponent Glass Optical Fiber by adding $Ga_2O_3$ ($Ga_2O_3$ 첨가에 따른 다성분계 glass optical fiber의 특성)

  • 윤상하;강원호
    • Electrical & Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.210-216
    • /
    • 1997
  • The th ermal and optical properties of multicomponent oxide glass optical fiber by adding heavy metal oxide Ga$_{2}$O$_{3}$(0-20wt%) were investigated. The fiber samples were made by the method of rod in tube. The optical loss of fiber was measured in 0.3-1.8.mu.m wavelength region. As Ga$_{2}$O$_{3}$ increased up to 20wt%, the transition and softening temperature of bulk glass were increased from 495.deg. C to 579.deg. C and from 548.deg. C to 641.deg. C, respectively. Whereas the thermal expansion coefficient was decreased from 102 to 79.1x10$^{-7}$ /.deg. C. The refractive index was increased from 1.621 to 1.665, and IR cut-off wavelength was enlarged from 4.64.mu.m to 6.1.mu.m. The optical loss of fiber was remarkably decreased in 1.146.mu.m-1.8.mu.m wavelength region.

  • PDF

Spectral and Thermal Studies of Transition Metal PSSA Ionomers

  • Shim, Il-Wun;Risen, William M. Jr.
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.6
    • /
    • pp.368-376
    • /
    • 1988
  • Transition metal PSSA ionomers containing Co(II), Ni(II), Cr(III), Ru(III), and Rh(III) are investigated by IR, Far-IR, UV-Vis and DSC. Reliable IR Spectroscopic criteria are established for assessing the degree of ion-exchange of PSSA ionomers and the local structures around metal cations in them. In the hydrated transition metal PSSA ionomers, the ionic groups are solvated by water molecules and there is no significant interactions between sulfonate group and metal cations. The visible spectra indicated that metal cations are present as [M$(H_2O)_6$]$^{n+}$ with Oh symmetry. Their $T_g$ values increase as the extent of ionic site concentration increases, but there is no direct dependence of $T_g$ on the nature of metal cations or their oxidation states. Thus, the water content in PSSA ionomer is found to have dominant influence on $T_g$ of hydrated transition metal PSSA ionomers. Dehydration of the hydrated transition metal PSSA ionomers results in direct interaction between ionic groups and significant color changes of the ionomers due to the changes of the local structures around metal cations. On the base of spectral data, their local structures are discussed. In case of dehydrated 12.8 and 15.8 mol % transition metal PSSA ionomers, no glass transition is observed in 25-$250^{\circ}C$ region and this is believed to arise from the formation of highly crosslinked structures caused by direct coordination of sulfonate groups of metal cations. In the 6.9 mol % transition metal PSSA ionomers, the glass transition is always observed whether they are hydrated or dehydrated and this is though to be caused by the sufficient segmental mobility of the polymer backbone.

Flow Stress and Deformation Behavior of Zr-based Bulk Metallic Glass Composite in Supercooled Liquid Region (Zr계 비정질 복상 합금의 과냉 액상 영역에서의 유동 음력과 변형거동)

  • Jun, H.J.;Lee, K.S.;Chang, Y.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.417-420
    • /
    • 2006
  • The composition and structure of dendrite phase within $Zr_{76.11}Ti_{4.20}Cu_{4.51}Ni_{3.16}Be_{1.49}Nb_{10.53}$ bulk metallic glass (BMG) were confirmed by using an EPMA, XRD and TEM, respectively. The chief elements of dendrite phase were Zr-Ti-Nb and had a BCC structure. The thermal properties of this BMG have been then subsequently investigated by using a differential scanning calorimeter (DSC). The glass transition and crystallization onset temperatures were determined as $339.7^{\circ}C$ and $375.8^{\circ}C$ for this alloy, respectively. Mechanical properties have also been examined by conducting a series of uniaxial compression tests at various temperatures within supercooled liquid region under the strain rates between $10^{-4}/s$ and $3{\times}10^{-2}/s$. The deformation behavior of BMG composite within supercooled liquid region is similar to one of Vit-1 exhibiting amorphous single phase alloy. The flow stresses of BMG composite, however, are entirely higher than those of Vit-1 because dendrite phases are interfere with moving of atoms.

  • PDF

Characteristics of Heavy Metal Oxide Glasses in BaO-GeO2-La2O3-ZnO-Sb2O3 System for Infrared Lens (적외선 렌즈용 BaO-GeO2-La2O3-ZnO-Sb2O3계 중금속 산화물 유리의 특성)

  • Sang-Jin Park;Bok-Hyun Oh;Sang-Jin Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.414-421
    • /
    • 2023
  • Infrared radiation (IR) refers to the region of the electromagnetic radiation spectrum where wavelengths range from about 700 nm to 1 mm. Any object with a temperature above absolute zero (0 K) radiates in the infrared region, and a material that transmits radiant energy in the range of 0.74 to 1.4 um is referred to as a near-infrared optical material. Germanate-based glass is attracting attention as a glass material for infrared optical lenses because of its simple manufacturing process. With the recent development of the glass molding press (GMP) process, thermal imaging cameras using oxide-based infrared lenses can be easily mass-produced, expanding their uses. To improve the mechanical and optical properties of commercial materials consisting of ternary systems, germanate-based heavy metal oxide glasses were prepared using a melt-cooling method. The fabricated samples were evaluated for thermal, structural, and optical properties using DSC, XRD, and XRF, respectively. To derive a composition with high glass stability for lens applications, ZnO and Sb2O3 were substituted at 0, 1, 2, 3, and 4 mol%. The glass with 1 mol% added Sb2O3 was confirmed to have the optimal conditions, with an optical transmittance of 80 % or more, a glass transition temperature of 660 ℃, a refractive index of 1.810, and a Vickers hardness of 558. The possibility of its application as an alternative infrared lens material to existing commercial materials capable of GMP processing was confirmed.

The Study on Properties of Multicomponent Optical Glass Fiber by Adding Ga$_2$O (Ga$_2$O$_3$첨가에 따른 다성분계 Optical Glass Fiber의 특성에 관한 연구)

  • 윤상하;강원호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.128-134
    • /
    • 1996
  • In this study, the thermal and optical properties of multicomponent glass optical fiber by adding heavy metal oxide Ga$_2$O$_3$were investigated. The fiber samples were made by rod in tube method. The optical loss of fiber was measured in 0.3~1.8${\mu}{\textrm}{m}$ wavelength region. As Ga$_2$O$_3$increased up to 20wt%, the transition and softening temperature of bulk glass were increased from 495$^{\circ}C$ to 579$^{\circ}C$ and from 548$^{\circ}C$ to 641$^{\circ}C$respectively. Whereas the thermal expansion coefficient was decreased from 102 to 79.1$\times$10$^{-7}$ $^{\circ}C$. The refractive index was increased from 1.621 to 1.665, and IR cut-off wavelength was enlarged from 4.64${\mu}{\textrm}{m}$ to 6.1${\mu}{\textrm}{m}$. The optical loss of fiber was decreased and more remarkably decreased in 1.146${\mu}{\textrm}{m}$~1.8${\mu}{\textrm}{m}$ wavelength region.

  • PDF

Properties of glass fiber by adding $Ga_2O_3$ in the $SiO_2-PbO-K_2O-Al_2O_ 3$ system for infrared sensor ($Ga_2O_3$ 첨가에 따른 $SiO_2-PbO-K_2O-Al_2O_ 3$계 적외선 센서용 glass fiber의 특성)

  • 이명원;윤상하;강원호
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1047-1052
    • /
    • 1996
  • In this study, the thermal and optical proper-ties of multicomponent oxide glass fiber for IR sensor by adding heavy metal oxide Ga$_{2}$O$_{3}$ were investigated. The fiber samples were made by rod-in tube method. The optical loss of fiber was measured in 0.3-1.8/M wavelength region. As Ga$_{2}$O$_{3}$ increased up to 12wt%, the transition and softening temperature of bulk glass were increased from 495.deg. C to 564.deg. C and from 548.deg. C to 612.deg. C respectively. Whereas the thermal expansion coefficient was decreased from 102 to 88.2*10$^{-7}$ /.deg. C. The refractive index was increased from 1.621 to 1.662, and IR cut-off wavelength was enlarged from 4.64.mu.m to 5.22.mu.m. The optical loss of fiber was decreased and more remarkably decreased in 1.146.mu.m-1.8.mu.m wavelength region.

  • PDF