• Title/Summary/Keyword: glass furnace

Search Result 199, Processing Time 0.027 seconds

Influence of Selenization Temperature on the Properties of Cu2ZnSnSe4 Thin Films (Selenization 온도가 Cu2ZnSnSe4 박막의 특성에 미치는 영향)

  • Yeo, Soo Jung;Gang, Myeng Gil;Moon, Jong-Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.97-100
    • /
    • 2015
  • The kesterite $Cu_2ZnSnSe_4$ (CZTSe) thin film solar cells were synthesized by selenization of sputtered Cu/Sn/Zn metallic precursors on Mo coated soda lime glass substrate in Ar atmosphere. Cu/Sn/Zn metallic precursors were deposited by DC magnetron sputtering process with 30 W power at room temperature. As-deposited metallic precursors were placed in a graphite box with Se pellets and selenized using rapid thermal processing furnace at various temperature ($480^{\circ}C{\sim}560^{\circ}C$) without using a toxic $H_2Se$ gas. Effects of Selenization temperature on the morphological, crystallinity, electrical properties and cell efficiency were investigated by field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD), J-V measurement system and solar simulator. Further details about effects of selenization temperature on CZTSe thin films will be discussed.

The development of Dy free MAGFINE and its applications to Motors

  • Honkura, Yoshinobu
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.12a
    • /
    • pp.95-95
    • /
    • 2013
  • The NdFeB magnet can be classified into the sintered magnet and bonded magnet. The former has superior magnet characteristics but the degree of freedom in shape is highly restricted, whereas the latter has a high degree of freedom, but its magnet characteristics are inferior to the former. When a NdFeB magnet is used at the elevated temperature, part of Nd must be replaced with a high priced Dy to increase its coercive force. For these reasons, a Dy free and high performance NdFeB bonded magnet is desired strongly. The author successfully developed a Dy free NdFeB anisotropic bonded magnet based on discovery of new phenomena called as d-HDDR reaction and its mass production process such as a thermally balanced hydrogen reaction furnace, micro capsuled powder, compression molding / injection molding under magnetic field, magnetic die and so on. Applied to DC brush seat motor for automotive use, the motor has become 50% small in size and weight. The commercialization of a half sized motor for automotive use has been realized up to the market share of 30%. At present, its commercialization is extending to various types of motors such as power tool, ABS motor, wiper motor, window motor, electric bike power motor, and compressor motor. It is expected that the applications will be increasingly enlarged to EV motor, wind generator, EPS motor, washing machine, and glass cutting machine. This innovative technology has realized Dy free high performance magnet and mudt make big contribution to not only rare element strategies but also energy conservation.

  • PDF

Study of Thermal Behaviors on sub-50 nm Copper Nanoparticles by Selective Laser Sintering Process for Flexible Applications (선택적 레이저 공정을 이용한 구리 나노 입자의 소결 특징 분석 및 플렉서블 전자 소자 제작 기술 개발에 관한 연구)

  • Gwon, Jin-Hyeong;Jo, Hyeon-Min;Lee, Ha-Beom;Eom, Hyeon-Jin;Go, Seung-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.134-134
    • /
    • 2016
  • The effect of different thermal treatments on the sub-50 nm copper nanoparticles is examined in the aspects of chemical, electrical and surface morphology. The copper nanoparticles are chemically synthesized and fabricated for paste-type solution. Simple bar coating method is practiced as a deposition process to form copper thin film on a typical slide glass. Deposited copper thin films are annealed by two different routes: general tube furnace with 99.99 % Ar atmosphere and selective laser sintering process. The thermal behavior of the different thermal-treated copper thin films is compared by SEM, XRD, FT-IR and XPS analysis. In this study, the laser sintering process ensures low annealing temperature, fast working speed and ambient-accessible route. Moreover, the laser-sintered copper thin film shows good electrical property and enhanced chemical stability than conventional thermal annealing process. Consequently, the proposed laser sintering process can be compatible with plastic substrate for flexible applications.

  • PDF

Behavior of Solid Phase Crystallization of Amorphous Silicon Films at High Temperatures according to Raman Spectroscopy (라만 분석을 통한 비정질 실리콘 박막의 고온 고상 결정화 거동)

  • Hong, Won-Eui;Ro, Jae-Sang
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.1
    • /
    • pp.7-11
    • /
    • 2010
  • Solid phase crystallization (SPC) is a simple method in producing a polycrystalline phase by annealing amorphous silicon (a-Si) in a furnace environment. Main motivation of the crystallization technique is to fabricate low temperature polycrystalline silicon thin film transistors (LTPS-TFTs) on a thermally susceptible glass substrate. Studies on SPC have been naturally focused to the low temperature regime. Recently, fabrication of polycrystalline silicon (poly-Si) TFT circuits from a high temperature polycrystalline silicon process on steel foil substrates was reported. Solid phase crystallization of a-Si films proceeds by nucleation and growth. After nucleation polycrystalline phase is propagated via twin mediated growth mechanism. Elliptically shaped grains, therefore, contain intra-granular defects such as micro-twins. Both the intra-granular and the inter-granular defects reflect the crystallinity of SPC poly-Si. Crystallinity and SPC kinetics of high temperatures were compared to those of low temperatures using Raman analysis newly proposed in this study.

Evaluation of Solar Cell Properties of Poly-Si Thin Film Fabricated with Novel Process Conditions for Solid Phase Crystallization (고상 결정화법을 위한 새로운 공정조건으로 제작된 다결정 Si 박막의 태양전지 특성 평가)

  • Kweon, Soon-Yong;Jeong, Ji-Hyun;Tao, Yuguo;Varlamov, Sergey
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.766-772
    • /
    • 2011
  • Amorphous Si (a-Si) thin films of $p^+/p^-/n^+$ were deposited on $Si_3N_4$/glass substrate by using a plasma enhanced chemical vapor deposition (PECVD) method. These films were annealed at various temperatures and for various times by using a rapid thermal process (RTP) equipment. This step was added before the main thermal treatment to make the nuclei in the a-Si thin film for reducing the process time of the crystallization. The main heat treatment for the crystallization was performed at the same condition of $600^{\circ}C$/18 h in conventional furnace. The open-circuit voltages ($V_{oc}$) were remained about 450 mV up to the nucleation condition of 16min in the nucleation RTP temperature of $680^{\circ}C$. It meat that the process time for the crystallization step could be reduced by adding the nucleation step without decreasing the electrical property of the thin film Si for the solar cell application.

Annealing effects of CdS thin films grown by Chemical bath deposition(CBD) (Chemical bath deposition(CBD)에 의해 성장된 CdS 박막의 annealing 효과)

  • Kim, Mi-Joung;Jung, Won-Ho;Oh, Dong-Hoon;Chae, Young-An;Cha, Deok-Joon;Cho, Seung-Gon;Jung, Yang-June;Babajanyan, Arsen;Lee, Kie-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.358-360
    • /
    • 2007
  • For large scaled solar cells and photosensors CdS thin films of $2{\mu}m$ thickness have deposited on ITO glass substrate by chemical bath deposition methode in $300^{\circ}C$ electric furnace. The surface roughness and resistance of cadmium sulphide(CdS) thin films with different microstructures and morphologies was investigated by using a x-ray diffraction (XRD), a scanning electron microscope (SEM), an atomic force microscope (AFM), and a near-field scanning microwave microscope (NFMM). As the different substrate heat temperatures, the microwave reflection coefficient $S_{11}$ and intensity of the (002) diffraction peak was changed, and the surface morphology also has shown differently.

  • PDF

A study on the development of thin solid state batteries (박막 고체전지 개발에 관한 연구)

  • 권혁상;이홍로
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.5
    • /
    • pp.215-221
    • /
    • 1992
  • This research is aimed at developing(110) preferred TiS2 cathode films and glass typed solid electro-lytes which have high ionic migrations and low electron conductivities for thin secondary solid batteries. To obtain preferred oriented TiS2 thin films on a substrate by CVD method using TiCl4 and H2S gases three factors of heating temperature, inner pressure of furnace and TiCl4/H2S gas mole fraction were ex-amined systematically. To obtain solid films of Li2O-B2O3-SiO2 electrolytes by r.f. sputtering for thin proto-type batteries of Li/Li2O-B2O3-SiO2TiS2, sputtering conditions were examined. TiS2 cathode films showed columnar structure, namely c axis oriented parallely. At low pressure of reaction chamber and low heating temperature, surface of smooth TiS2 films couldd be obtained. Ionic conductivity of Li2O-B2O3-SiO2 films manufactured by r.f. magnetron sputtering were 3$\times$10-7$\Omega$-1cm-1 and electron conductivities were 10-11$\Omega$-1cm-1. Open cell voltage of thin lithium batteries were 2.32V with a designed prototype cell.

  • PDF

Optimization of ZnO-based transparent conducting oxides for thin-film solar cells based on the correlations of structural, electrical, and optical properties (ZnO 박막의 구조적, 전기적, 광학적 특성간의 상관관계를 고려한 박막태양전지용 투명전극 최적화 연구)

  • Oh, Joon-Ho;Kim, Kyoung-Kook;Song, Jun-Hyuk;Seong, Tae-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.42.2-42.2
    • /
    • 2010
  • Transparent conducting oxides (TCOs) are of significant importance for their applications in various devices, such as light-emitting diodes, thin-film solar cells, organic light-emitting diodes, liquid crystal displays, and so on. In order for TCOs to contribute to the performance improvement of these devices, TCOs should have high transmittance and good electrical properties simultaneously. Sn-doped $In_2O_3$ (ITO) is the most commonly used TCO. However, indium is toxic and scarce in nature. Thus, ZnO has attracted a lot of attention because of the possibility for replacing ITO. In particular, group III impurity-doped ZnO showed the optoelectronic properties comparable to those of ITO electrodes. Al-doped ZnO exhibited the best performance among various doped ZnO films because of the high substitutional doping efficiency. However, in order for the Al-doped ZnO to replace ITO in electronic devices, their electrical and optical properties should further significantly be improved. In this connection, different ways such as a variation of deposition conditions, different deposition techniques, and post-deposition annealing processes have been investigated so far. Among the deposition methods, RF magnetron sputtering has been extensively used because of the easiness in controlling deposition parameters and its fast deposition rate. In addition, when combined with post-deposition annealing in a reducing ambient, the optoelectronic properties of Al-doped ZnO films were found to be further improved. In this presentation, we deposited Al-doped ZnO (ZnO:$Al_2O_3$ = 98:2 wt%) thin films on the glass and sapphire substrates using RF magnetron sputtering as a function of substrate temperature. In addition, the ZnO samples were annealed in different conditions, e.g., rapid thermal annealing (RTA) at $900^{\circ}C$ in $N_2$ ambient for 1 min, tube-furnace annealing at $500^{\circ}C$ in $N_2:H_2$=9:1 gas flow for 1 hour, or RTA combined with tube-furnace annealing. It is found that the mobilities and carrier concentrations of the samples are dependent on growth temperature followed by one of three subsequent post-deposition annealing conditions.

  • PDF

The Current Status of Recycling Process and Problems of Recycling according to the Packaging Waste of Korea (국내 포장 폐기물에 따른 재질별 재활용 공정 현황 및 재활용 문제점)

  • Ko, Euisuk;Shim, Woncheol;Lee, Hakrae;Kang, Wookgeon;Shin, Jihyeon;Kwon, Ohcheol;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.2
    • /
    • pp.65-71
    • /
    • 2018
  • Paper packs, glass bottles, metal cans, and plastic materials are classified according to packaging material recycling groups that are Extended Producer Responsibility (EPR). In the case of waste paper pack, the compressed cartons are dissociated to separate polyethylene films and other foreign substance, and then these are washed, pulverized and dried to produce toilet paper. Glass bottle for recycling is provided to the bottle manufacturers after the process of collecting the waste glass bottle, removing the foreign substance, sorting by color, crushing, raw materializing process. Waste glass recycling technology of Korea is largely manual, except for removal of metal components and low specific gravity materials. Metal can is classified into iron and aluminum cans through an automatic sorting machine, compressed, and reproduced as iron and aluminum through a blast furnace. In the case of composite plastic material, the selected compressed product is crushed and then recycled through melt molding and refined products are produced through solid fuel manufacturing steps through emulsification and compression molding through pyrolysis. In the recycling process of paper packs, glass bottles, metal cans, and plastic materials, the influx of recycled materials and other substances interferes with the recycling process and increases the recycling cost and time. Therefore, the government needs to improve the legal system which is necessary to use materials and structure that are easy to recycle from the design stage of products or packaging materials.

The Effect of Stress on the Thermal Stability of the TiS$i_2$ Film (TiS$i_2$ 박막의 열안정성에 미치는 막 스트레스의 영향)

  • Kim, Yeong-Uk;Kim, Yeong-Uk;Go, Jong-U;Lee, Nae-In;Kim, Il-Gwon;Park, Sun-O;An, Seong-Tae;Lee, Mun-Yong;Lee, Jong-Gil
    • Korean Journal of Materials Research
    • /
    • v.3 no.1
    • /
    • pp.12-18
    • /
    • 1993
  • Abstract The effect of the film stress on the thermal stability of TiSi, films under the dielectric overcoat was investigated. TiS$i_2$ films with the sheet resistance of 1.2 ohm/sq. were produced by a solid-state reaction between sputtered Ti film and single-crystalline Si in an RTA (rapid thermal anneal) machine. Dielectric overcoats such as the USG (Undoped Silicate Glass, Si$O_2$) film and the PE-SiN(S$i_3$$N_4$) film were deposited by AP-CVD and PE-CVD, respectively, on the TiS$i_2$ film. The thermal stability of the TiSi, film was evaluated by changes in the sheet resistance, film stress and microstructure after furnace anneals at 90$0^{\circ}C$. Agglomeration of the TiSi2 film high temperatures results in the increase of sheet resistance and the decrease of tensile stress of TiSi, film. The stress level of the TiSi" PE-SiN and ~SG films at 90$0^{\circ}C$C was 1.3${\times}{10^{9}}$, 1.25 ${\times}{10^{10}}$, 2.26 ${\times}{10^{10}}$ dyne/c$m^2$ in tensile, respectively. Dielectric films deposited by CVD on TiSi, was effective on preventing agglomeration of TiSi,. The PE-SiN film mproved the thermal stability of TiSi, more effectively than the AP-CVD USG film. It is considered that agglomeration of the TiS$i_2$ film under the stress of dielectric overcoat at high temperature can be caused by a diffusional flow of atom called Nabarro-Herring microcreep.reep.

  • PDF