• Title/Summary/Keyword: glass forming

Search Result 309, Processing Time 0.021 seconds

Study on the Aspheric Glass Lens Forming Simulation in the Progressive GMP process (순차이송 GMP 공정에서의 비구면 유리렌즈 성형 해석에 관한 연구)

  • Chang, S.H.;Gang, J.J.;Shin, K.H.;Jung, W.C.;Heo, Y.M.;Jung, T.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.539-542
    • /
    • 2008
  • Recently, GMP(Glass Molding Press) process is mainly used to produce aspheric glass lenses. Because glass lens is heated at high temperature above Ty (yielding point) for forming glass, the quality of aspheric glass lens is deteriorated by residual stresses which are generated in a aspheric glass lens after forming. Before this study, as a fundamental study to develop forming conditions for progressive GMP process, compression, strain relaxation and thermal conductivity tests were carried out to obtain the visco-rigid plastic, the visco-elastic and thermal properties of K-PBK40 which is newly developed and applied for precision molding glass material, In this study, using the experimental results we obtained, a glass lens forming simulation in progressive GMP process was carried out and we could forecast the shape of deformed glass lenses and residual stresses contribution in the structure of deformed glass lenses after forming.

  • PDF

Finite Element Analysis of Glass Lens Forming Process Using Open Die (개방형 금형을 이용한 유리 렌즈 성형 해석)

  • 나진욱;임성한;전병희;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.143-147
    • /
    • 2003
  • Despite of outstanding optical performance of glass lens, glass lens have not been widely used because of poor productivity and high cost due to manufacturing process i.e. grinding, polishing. However, press-forming method of glass lens overcomes this disadvantage because of mass production. When glass lens is produced by press-forming method using closed die, it is needed that the volume of glass lens preform precisely measured in order to prevent incomplete products and to increase in life of die. The present paper shows the shortcoming of forming process with closed die, and performs FEM simulation of forming process with open die in order to overcome this shortcoming. The design parameter of open die is selected in standard of assembly with optical module and maintenance of optical performance. FEM simulation is carried out with selected parameter of open die and two basic preform. According to distribution of effective strain in glass lens, optical property of glass lens formed at each set of die and preform is compared.

  • PDF

Forming Conditions of Curved Glass using Force Applying System of Glass Molding System (유리성형시스템의 힘측정기반 가압장치를 이용한 곡면유리 성형조건)

  • Hong, Tae Kyeong;Kim, Gab Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.4
    • /
    • pp.335-342
    • /
    • 2014
  • This paper describes the forming conditions of smart-phone curved glass using the glass molding system with force applying system. The force applying system is composed of a body, a motor and gear, a rectilinear movement structure, a force sensor, a LVDT sensor (Linear Variable Differential Transformer), a up and down moving block, and so on. The glass molding system for characteristic test to find the forming conditions consists of the force applying system and a chamber, a metallic mold, a upper heater, a lower heater and so on. The characteristic test for forming conditions of smart-phone curved glass was carried out at forming temperature $620^{\circ}C$ and $650^{\circ}C$ using the glass molding system. As a result of the characteristic test, the forming conditions of curved glass could be found, and it is thought that the conditions can be used to apply to the system for producing in large quantities.

Finite Element Analysis of Glass Lens Forming Process Using Open Die (개방형 금형을 이용한 유리 렌즈 성형 해석)

  • 나진욱;임성한;오수익;전병희
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.296-301
    • /
    • 2003
  • Though a glass tens has outstanding optical performance, it has not been widely used because manufacturing process shows poor productivity and high cost. However, press-forming method of glass lens overcomes these disadvantages with mass production. When glass lens is produced by press-forming method using closed die, it is needed that the volume of glass lens preform is precisely measured in order to prevent incomplete products and to increase in life of die. The present. paper shows the shortcoming of forming process with closed die, and performs FEM simulation of forming process with open die in order to overcome this shortcoming. The design parameters of open die are selected on the basis of assembly with optical module and maintenance of optical performance. FEM simulation is carried out with selected parameter of open die and two basic preform. According to distribution of effective strain in glass lens, optical property of glass lens formed at each set of die and preform is compared.

The Strength of Sintered Body with the Composition and the Forming Process of LTCC Materials (LTCC 소재의 조성과 성형 공정에 따른 소결체의 강도 특성)

  • Gu, Sin Il;Shin, Hyo Soon;Yeo, Dong Hun;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.27-32
    • /
    • 2013
  • According to the composition of LTCC material, though it was thought that bulk defect which was made in forming process effects on the densification during the sintering, it was not reported systemically. In this study, we evaluated crystal structure, 3 point bending strength, hardness and microstructure of the samples by uniaxial pressing and tape casting using the commercial powders of the crystallizing glass and the glass/ceramic composite. In the case of glass/ceramic composite, Viox-001 powder with residual glass in the sintering, 3 point bending strength was similar regardless of forming process due to fill the bulk defect by residual glass. In the case of crystallizing glass, MLS-22, because glass phase was small in the sintering, glass did not fill the pore in the sample by uniaxial pressing process, therefore, the 3 point bending strength of it was 167 MPa. However, the 3 point bending strength of the sample by tape casting was 352 MPa and much higher. Meanwhile, crystal structure and hardness were similar regardless of forming process.

Glass Forming Ability of Bulk Amorphous Alloy Scrap by Fluxing (플럭스처리에 의한 벌크비정질합금 스크랩의 비정질형성능)

  • Kang, Bok-Hyun;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.30 no.3
    • /
    • pp.94-99
    • /
    • 2010
  • When the returned scrap of bulk amorphous alloy is remelted, impurities such as oxides and intermetallic compounds increase. Glass forming ability of its scrap is deteriorated remarkably. Melt fluxing technique is introduced to enhance the glass forming ability during melting and freezing of bulk amorphous alloys. Cu and Zr based alloys are chosen. Small pieces of these alloy scraps and $B_2O_3$ flux are put together in a quartz tube. Cyclic heating and cooling are done by induction heating and water quenching or air cooling. Melting fluxing was effective for both Cu-based and Zr-based alloy, and their glass forming abilities were improved with increasing the number of fluxing.

A Study on Flow Characteristics of PBK40 for Glass Lens Forming Process Simulation Using a Plate Heating Type (Plate 가열방식 유리렌즈 성형공정해석을 위한 PBK40 소재의 유동 특성에 관한 연구)

  • Chang, Sung-Ho;Yoon, Gil-Sang;Shin, Gwang-Ho;Lee, Young-Min;Jung, Woo-Chul;Kang, Jeong-Jin;Jung, Tae-Sung;Kim, Dong-Sik;Heo, Young-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.115-122
    • /
    • 2007
  • Recently, remarkable progress has been made in both technology and production of optical elements including aspheric lens. Especially, requirements for machining glass materials have been increasing in terms of limitation on using environment, flexibility of material selection and surface accuracy. In the past, precision optical glass lenses were produced through multiple processes such as grinding and polishing, but mass production of aspheric lenses requiring high accuracy and having complex profile was rather difficult. In such a background, the high-precision optical GMP process was developed with an eye to mass production of precision optical glass parts by molding press. This GMP process can produce with precision and good repeatability special form lenses such as camera, video camera, aspheric lens for laser pickup, $f-\theta$ lens for laser printer and prism, and me glass parts including diffraction grating and V-grooved base. GMP process consist a succession of heating, forming, and cooling stage. In this study, as a fundamental study to develop molds for GMP used in fabrication of glass lens, we conducted a glass lens forming simulation. In prior to, to determine flow characteristics and coefficient of friction, a compression test and a compression farming simulation for PBK40, which is a material of glass lens, were conducted. Finally, using flow stress functions and coefficient of friction, a glass lens forming simulation was conducted.

Effects of Transition Temperature and Atomic Ratio on Glass Formation Tendency in the PbO-B$_2$O$_3$-TiO$_2$-BaO System (PbO-B$_2$O$_3$-TiO$_2$-BaO계의 유리화에 대한 전이온도 및 성분 원소비의 영향)

  • 이선우;심광보;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1274-1279
    • /
    • 1998
  • The glass forming ability of the PbO-B2O3-TiO3-BaO system was investigated in relation to transitieon tem-peratures and the atomic ratio between constituents. Glass forming tendency was improved as the tem-peratures and the atomic ratio between constituents. Glass forming tendency was improved as the tem-perature differences between liquidus temperature and crystallization(or glass transition) temperature de-creased and the temperature difference between crystallization and glass transition temperature increases. The atomic ratio could be used as a criterion to deign glass systems. The interposition of B and Ba atoms between Pb and Ti atoms was one of important factors in glass formation.

  • PDF

Study of Mold Internal Temperature Measurement Using PTCR for 3-D Glass Heat Forming (PTCR을 이용한 3-D Glass 열성형 금형의 내부 온도 측정에 관한 연구)

  • Lee, Ho-Soon;Ahn, Hae-Won;Kim, Si-Gyun;Kim, Gi-Man;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.146-152
    • /
    • 2017
  • In order to make 3-D glass from 2-D glass for mobile device windows, a mold is used for heat forming. In this process, the temperature of the glass is very important. However, measuring the temperature of the glass inside the mold is very difficult owing to the mold structure and the high temperature. The purpose of this study is to measure the temperature inside the mold by using Process Temperature Control Rings (PTCR) and to compensate for temperature differences in the heat forming machine and inside the mold. The measuring method uses the ceramic material's shrinkage characteristics, which makes it possible to measure the temperature inside the mold at various locations.

Dynamic Materials Model-Based Study on the Formability of Bulk Metallic Glass Sheets (동적재료모델에 의한 벌크 비정질 금속의 판재성형성에 대한 고찰)

  • 방원규;이광석;안상호;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.173-176
    • /
    • 2002
  • Viscoplastic deformation and sheet forming behavior of multicomponent Zr-based bulk metallic glass alloy has been investigated. From a series of mechanical test results, basic processing maps based on Dynamic Materials Model have been constructed to establish feasible forming conditions. Stamping in laboratory scale was then performed at the various stroke speeds and temperatures using a hydraulic press. Failure in macroscopic level was examined to check the validity of constructed processing maps.

  • PDF