• Title/Summary/Keyword: ginsenoside-Rg3

Search Result 543, Processing Time 0.022 seconds

Physicochemical Properties of Red Ginseng on Storage Condition of the Fresh Ginseng (수삼의 저장조건에 따른 홍삼의 이화학적 특성)

  • Kim, Chun-Suk;Jung, In-Chan;Kim, Se-Bong;Yang, Deok-Chun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.1
    • /
    • pp.52-56
    • /
    • 2005
  • This study was compared the quality of red ginseng and characteristic changes of physicochemical properties according to the storage period (non storage, two days, six days, eight days, ten days) and store temperature $20^{\circ}C, \;34^{\circ}C,\;-10^{\circ}C)$. The water content of the fresh ginseng has a tendency to decrease as storage time increases. When we store the fresh ginseng for 10 days, the ideal storage temperature is considered to be $34^{\circ}C$ degrees. The amount of total nitrogen has a tendency to increase more than that of no storage as storage period approaches to 10 days. In the storage temperature, the amount of total nitrogen has a tendency to increase in the order of 1) room temperature, 2) freezing storage, 3) cold storage more than no storage. Cold storage has larger contents of total phenolic compounds than room temperature and freezing storage according to storage temperature. When we analyze the changes of a relative density of eight elements, ginsenoside $Rb_1,Rb_2,Rc,Rd,Re,Rg_3,Rg_1\;and\;Rg_2$ in red ginseng's saponin Rf according to storage condition, the relative density of $Rb_1\;and\;Rg_1$ against Rf diminishes in each storage condition as storage time increases. And it is also thought that density change of ginsenoside appears because of the materials, and change tendency according to storage condition is not clear. From functional nature on the evaluation of the quality, taste and fragrance of red ginseng according to storage district, it is evaluated that it is most recommendable for red ginseng to be transported and stored in $3{\sim}4$ degrees to keep its best condition.

Stereoisomer-specific ginsenoside 20(S)-Rg3 reverses replicative senescence of human diploid fibroblasts via Akt-mTOR-Sirtuin signaling

  • Yang, Kyeong-Eun;Jang, Hyun-Jin;Hwang, In-Hu;Hong, Eun Mi;Lee, Min-Goo;Lee, Soon;Jang, Ik-Soon;Choi, Jong-Soon
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.341-349
    • /
    • 2020
  • Background: The replicative senescence of human dermal fibroblasts (HDFs) is accompanied by growth arrest. In our previous study, the treatment of senescent HDFs with Rg3(S) lowered the intrinsic reactive oxygen species (ROS) levels and reversed cellular senescence by inducing peroxiredoxin-3, an antioxidant enzyme. However, the signaling pathways involved in Rg3(S)-induced senescence reversal in HDFs and the relatedness of the stereoisomer Rg3(R) in corresponding signaling pathways are not known yet. Methods: We performed senescence-associated β-galactosidase and cell cycle assays in Rg3(S)-treated senescent HDFs. The levels of ROS, adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP) as well as the mitochondrial DNA copy number, nicotinamide adenine dinucleotide (NAD)+/1,4-dihydronicotinamide adenine dinucleotide (NADH) ratio, and NAD-dependent sirtuins expression were measured and compared among young, old, and Rg3(S)-pretreated old HDFs. Major signaling pathways of phosphatidylinositol 3-kinase/Akt, 5' adenosine monophosphate-activated protein kinase (AMPK), and sirtuin 1/3, including cell cycle regulatory proteins, were examined by immunoblot analysis. Results: Ginsenoside Rg3(S) reversed the replicative senescence of HDFs by restoring the ATP level and NAD+/NADH ratio in downregulated senescent HDFs. Rg3(S) recovered directly the cellular levels of ROS and the NAD+/NADH ratio in young HDFs inactivated by rotenone. Rg3(S) mainly downregulated phosphatidylinositol 3-kinase/Akt through the inhibition of mTOR by cell cycle regulators like p53/p21 in senescent HDFs, whereas Rg3(R) did not alter the corresponding signaling pathways. Rg3(S)-activated sirtuin 3/PGC1α to stimulate mitochondrial biogenesis. Conclusion: Cellular molecular analysis suggests that Rg3(S) specifically reverses the replicative senescence of HDFs by modulating Akt-mTOR-sirtuin signaling to promote the biogenesis of mitochondria.

Ginsenoside $Rg_3$ Increases the ATP-sensitive $K^+$ Channel Activity in the Smooth Muscle of the Rabbit Coronary Artery

  • Chung Induk;Lee Jeong-Sun
    • Journal of Ginseng Research
    • /
    • v.23 no.4
    • /
    • pp.235-238
    • /
    • 1999
  • ATP-sensitive $K^+$ channels $(K_{ATP})$ are expressed in vascular smooth muscle cells, skeletal muscle cells, pancreatic ${\beta}$ cells, neurons and epithelial cells. $K_{ATP}$ contributes to regulate membrane potential to control vascular tone, to protect myocardial ischemia, and to regulate insulin secretion in pancreatic ${\beta}$ cells. We previously demonstrated that ginseng saponins and ginsenoside $Rg_3$ activated maxi $Ca^{2+}-activated\;K^+$ channel, and this might cause vasodilation. Because $K_{ATP}$ plays an important roles to regulate the resting membrane potential in vascular smooth muscle cells, we investigated whether ginsenoside $Rg_3$ produces vasodilation by activating $K_{ATP}$ We showed in this study that $K_{ATP}$ is expressed in rabbit coronary artery smooth muscle cells. $K_{ATP}$ was inwardly rectifying and was inhibited by intemal application of ATP. Micromolar minoxidil activated, but glyburide inhibited the activity of $K_{ATP}$ Ginsenoside $Rg_3$ relieved inactivaiton of whole-cell $K_{ATP}$ current without affecting the peak amplitude of $K_{ATP}$ currents presumably due to more opening of the channels.

  • PDF

The Changes of Physicochemical Characteristics and Quality Stability of Korean Red Ginseng (Panax ginseng C.A. Meyer) Stored over 20 Years (20년 이상 장기저장된 홍삼의 이화학적 특성변화 및 품질안정성)

  • Kwak, Yi-Seong;Han, Min Woo;Bae, Bong-Seok;Ahn, Nam-Geun;Yu, Hye Young;Park, Chol-Soo;Baeg, In-Ho;Cho, Byung-Gu
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.4
    • /
    • pp.329-338
    • /
    • 2017
  • This study was investigated the changes of quality stability and physicochemical characteristics of the Korean red ginsengs stored for a long times over 20 years. The Korean red ginsengs were stored for 4 to 22 years in canned packaging with polypropylene film and wooden box at room temperatures. The unusal phenomena such as discoloration and pin hole in packaging were not observed. General bacteria showed the vlaues of below 100 CFU/g, coliform groups and molds were not found in any samples stored for 22 year. Any samples also were not detected in mycotoxins. The contents of moisture, ash and crude saponin were the levels of 10.6~11.1%, 3.8~4.2% and 4.1~4.7% during the whole storage periods, respectively. The contents of maltol, which has been known as characteristic flavour and antioxidant of Korean red ginseng, showed remarkably increasing tendency from 0.10 mg/g for 4 years to 2.53 mg/g for 22 years during the storage. The contents of AFG (arginyl-fructosyl-glucose), arginine and free sugar were slightly decreased. Acidic polysaccharide and ginsenoside were not changed significantly during the storage periods. The contents of acidic polysaccharide and total ginsenosides were the 75.1~76.3 mg/g and 15.1~16.6 mg/g, respectively. The sums of ginsenoside-Rg1,-Rb1 and -Rg3s were the ranges of 9.3~9.9 mg/g and PD (ginsenoside-Rb1, -Rb2,-Rc,-Rd,-Rg3s,-Rg3r)/PT (ginsenoside-Rg1,-Rg2,-Re,-Rf,-Rh1) saponin ratios were the levels of 1.4~1.5. These results suggest that Korean red ginsengs stored for long periods show relatively stable quaility stabilities and not significantly changed the contents of ginsenoside and polysaccharide during the storage up to 22 years.

Bifidus Fermentation Increases Hypolipidemic and Hypoglycemic Effects of Red Ginseng

  • Trinh, Hien-Trung;Han, Sang-Jun;Kim, Sang-Wook;Lee, Young-Chul;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1127-1133
    • /
    • 2007
  • Antihyperlipidemic and antihyperglycemic effects of Red Ginseng (RG, steamed and dried root of Panax ginseng C.A.Meyer, family Araliaceae), major component of which is ginsenoside Rg3, and Bifidodoterium-fermented RG (FRG), major component of which is ginsenoside Rh2, were investigated. Orally administered RG and FRG potently reduced the serum triglyceride levels in com-oil-induced hypertriglycemidemic mice as well as total cholesterol and triglyceride levels in Triton WR-1339-induced hyperlipidemic mice. Of the saponin and polysaccharide fractions of RG and FRG, the polysaccharide fraction inhibited postprandial blood glucose elevation of maltose- or starch-loaded mice and reduced the blood triglyceride levels in com-oil-induced hypertriglycemidemic mice. The saponin fraction and its ginsenosides Rg3 and Rh2 reduced blood triglyceride and total cholesterol levels in Triton WR1339-induced hyperlipidemic mice. The inhibitory effect of FRG and its main constituents against hyperlipidemia and hyperglycemia in mice were more potent than those of RG. These findings suggest that hypolipidemic and hypoglycemic effects of RG can be enforced by Bifidus fermentation and FRG may improve hyperlipidemia and hyperglycemia.

Changes in ginsenoside compositions and antioxidant activities of hydroponic-cultured ginseng roots and leaves with heating temperature

  • Hwang, Cho Rong;Lee, Sang Hoon;Jang, Gwi Yeong;Hwang, In Guk;Kim, Hyun Young;Woo, Koan Sik;Lee, Junsoo;Jeong, Heon Sang
    • Journal of Ginseng Research
    • /
    • v.38 no.3
    • /
    • pp.180-186
    • /
    • 2014
  • Background: This study evaluated changes in ginsenoside compositions and antioxidant activities in hydroponic-cultured ginseng roots (HGR) and leaves (HGL) with heating temperature. Methods: Heat treatment was performed at temperatures of $90^{\circ}C$, $110^{\circ}C$, $130^{\circ}C$, and $150^{\circ}C$ for 2 hours Results: The ginsenoside content varied significantly with heating temperature. The levels of ginsenosides Rg1 and Re in HGR decreased with increasing heating temperature. Ginsenosides F2, F4, Rk3, Rh4, Rg3 (S form), Rg3 (R form), Rk1, and Rg5, which were absent in the raw ginseng, were formed after heat treatment. The levels of ginsenosides Rg1, Re, Rf, and Rb1 in HGL decreased with increasing heating temperature. Conversely, ginsenosides Rk3, Rh4, Rg3 (R form), Rk1, and Rg5 increased with increasing heating temperature. In addition, ginsenoside contents of heated HGL were slightly higher than those of HGR. The highest extraction yield was 14.39% at $130^{\circ}C$, whereas the lowest value was 10.30% at $150^{\circ}C$ After heating, polyphenol contents of HGR and HGL increased from 0.43 mg gallic acid equivalent/g (mg GAE eq/g) and 0.74 mg GAE eq/g to 6.16 mg GAE eq/g and 2.86 mg GAE eq/g, respectively. Conclusion: Antioxidant activities of HGR and HGL, measured by 1,1-diphenyl-2-picrylhydrazyl and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical scavenging ability, increased with increasing heating temperature. These results may aid in improving the biological activity and quality of ginseng subjected to heat treatments.

Effects of Minor Ginsenosides, Ginsenoside Metabolites, and Ginsenoside Epimers on the Growth of Caenorhabditis elegans

  • Lee, Joon-Hee;Ahn, Ji-Yun;Shin, Tae-Joon;Choi, Sun-Hye;Lee, Byung-Hwan;Hwang, Sung-Hee;Kang, Ji-Yeon;Kim, Hyeon-Joong;Park, Chan-Woo;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.375-383
    • /
    • 2011
  • In the previous report, we have demonstrated that ginsenoside Rc, one of major ginsenosides, is a major component for the restoration for normal growth of worms in cholesterol-deprived medium. In the present study, we further investigated the roles of minor ginsenosides, such as ginsenoside $Rh_1$ and $Rh_2$, ginsenoside metabolites such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) and ginsenoside epimers such as 20(R)- and 20(S)-ginsenoside $Rg_3$ in cholesterol-deprived medium. We found that ginsenoside $Rh_1$ almost restored normal growth of worms in cholesterol-deprived medium in F1 generation. However, supplement of ginsenoside $Rh_2$ caused a suppression of worm growths in cholesterol-deprived medium. In addition, CK and PPD also slightly restored normal growth of worms in cholesterol-deprived medium but PPT not. In experiments using ginsenoside epimers, supplement of 20(S)- but not 20(R)-ginsenoside $Rg_3$ in cholesterol-deprived medium also almost restored worm growth. These results indicate that the absence or presence of carbohydrate component at backbone of ginsenoside, the number of carbohydrate attached at carbon-3, and the position of hydroxyl group at carbon-20 of ginsenoside might plays important roles in restoration of worm growth in cholesterol-deprived medium.

Modulation in NMDA and $GABA_A$ Receptor Expression after Cerebroventricular Infusion of Ginsenosides

  • Oh Seikwan;Kim Hack-Seang
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.96-112
    • /
    • 2002
  • In the present study, we have investigated the effects of centrally administered ginsenoside Rc or Rgl on the modulation of NMDA receptor and $GABA_A$ receptor binding in rat brain. The NMDA receptor binding was analyzed by quantitative autoradiography using $[^3H]MK-801$ binding, and $GABA_A$ receptor bindings were analyzed by using $[^3H]muscimol\;and\;[^3H]flunitrazepam$ in rat brain slices. Rats were infused with ginsenoside Rc or Rg1 ($10\;{\mu}g/10{\mu}l/hr$, i.c.v.) for 7 days, through pre-implanted cannula by osmotic minipumps (Alzet, model 2ML), The levels of $[^3H]MK-801$ binding were highly decreased in part of cortex and cingulated by ginsenoside Rc and Rgl. The levels of $[^3H]muscimol$ binding were strongly elevated in almost all regions of frontal cortex by the treatment of ginseoside Rc but decreased by ginsenoside Rg 1. However, the $[^3H]flunitrazepam$ binding was not modulated by ginsenoside Rc or ginsenoside Rgl infusion. These results suggest that prolonged infusion of ginsenoside could differentially modulate $[^3H]MK-801\;and\;[^3H]muscimol$ binding in a region-specific manner. Also, we investigated the influence of centrally administered ginsenoside on the regulation of mRNA levels of the family of NMDA receptor subtypes (NR1, NR2A, NR2B, NR2C) by in situ hybridization histochemistry in the rat brain. The level of NR1 mRNA is significantly increased in temporal cortex, caudate putamen, hippocampus, and granule layer of cerebellum in Rgl-infused rats as compared to control group. The level of NR2A mRNA is elevated in the frontal cortex. In contrast, it was decreased in CAI area of hippocampus in Rgl-infused rats. However, there was no significant change of NR1 and NR2A mRNA levels in Rc-infused rats. The level of NR2B mRNA is elevated in cortex, caudate putamen, and thalamus in both Rc- and Rg-infused rats. In contrast, NR2B level is decreased in CA3 in Rgl-infused rats. The level of NR2C mRNA is increased in the granule layer of cerebellum in only Rg1 but not Rc infused rats. These results show that structure difference of ginsenoside may diversely affect the modulation of expression of NMDA receptor subunit mRNA after infusion into cerebroventricle in rats.

  • PDF

Ginsenoside Rg1 Induces Apoptosis through Inhibition of the EpoR-Mediated JAK2/STAT5 Signalling Pathway in the TF-1/Epo Human Leukemia Cell Line

  • Li, Jing;Wei, Qiang;Zuo, Guo-Wei;Xia, Jing;You, Zhi-Mei;Li, Chun-Li;Chen, Di-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2453-2459
    • /
    • 2014
  • Ginsenoside Rg1 is one effective anticancer and antioxidant constituent of total saponins of Panax ginseng (TSPG), which has been shown to have various pharmacological effects. Our previous study demonstrated that Rg1 had anti-tumor activity in K562 leukemia cells. The aim of this study was designed to investigate whether Rg1 could induce apoptosis in TF-1/Epo cells and further to explore the underlying molecular mechanisms. Here we found that Rg1 could inhibit TF-1/Epo cell proliferation and induce cell apoptosis in vitro in a concentration and time dependent manner. It also suppressed the expression of EpoR on the surface membrane and inhibited JAK2/STAT5 pathway activity. Rg1 induced up-regulation of Bax, cleaved caspase-3 and C-PAPR protein and down-regulation of Bcl-2 and AG490, a JAK2 specific inhibitor, could enhance the effects of Rg1. Our studies showed that EpoR-mediated JAK2/STAT5 signaling played a key role in Rg1-induced apoptosis in TF-1/Epo cells. These results may provide new insights of Rg1 protective roles in the prevention a nd treatment of leukemia.