• Title/Summary/Keyword: ginsenoside Rd2

Search Result 252, Processing Time 0.028 seconds

Ginsenoside, Phenolic Acid Composition and Physiological Significances of Fermented Ginseng Leaf (발효처리가 인삼잎의 진세노사이드 및 페놀산 조성 변화와 생리활성에 미치는 영향)

  • Lee, Ka-Soon;Seong, Bong-Jae;Kim, Gwan-Hou;Kim, Sun-Ick;Han, Seung-Ho;Kim, Hyun-Ho;Baik, Nam-Doo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1194-1200
    • /
    • 2010
  • This study was carried out to investigate the compositional changes of ginsenosides and phenolic acids of ginseng leaf by fermentation in order to promote the utilization of ginseng leaf. The chief ginsenosides in non-fermented ginseng leaf (NFGL) were ginsenoside-Rg1 (26.0 mg/g), -Re (47.3 mg/g) and -Rd (23.9 mg/g). By fermentation, ginsenoside-Rg1, -Rb1, -Rb2, -Rb3, -Rc and -Re were decreased tremendously and new ginsenoside-Rh2, -Rh1, -Rg2 and -Rg3 appeared. Especially, ginsenoside-Rg3 (3.7 mg/g) on FGL was increased 15-fold compared to that of NFGL (0.2 mg/g). Total phenolic compound content of NFGL and FGL measured by colorimetric analysis was 350.4 and 312.5 mg%, respectively. There were 8 free and 6 ester forms of phenolic acids in NFGL. Among them, content of ferulic acid was the highest, comprised of 12.6 and 50.7 mg%, respectively. In FGL, total content of protocatechuic acid, p-hydroxybenzoic acid, and vanillic acid were increased by 28, 5 and 7.8 fold and ferulic acid was decreased greatly. Tyrosinase inhibitory activity of FGL was stronger than NFGL, while electron donating abilities of FGL were similar to NFGL.

Investigating herbal active ingredients and systems-level mechanisms on the human cancers (암치료를 위한 네트워크 기반 접근방식 활용 시스템 수준 연구)

  • Lee, Won-Yung
    • Herbal Formula Science
    • /
    • v.30 no.3
    • /
    • pp.175-182
    • /
    • 2022
  • Objective : This study aims to investigate the active ingredients and potential mechanisms of the beneficial herb on human cancers such as the liver by employing network pharmacology. Methods : Ingredients and their target information was obtained from various databases such as TM-MC, TTD, and Drugbank. Related protein for liver cancer was retrieved from the Comparative Toxicogenomics Database and literature. A hypergeometric test and gene set enrichment analysis were conducted to evaluate associations between protein targets of red ginseng (Panax ginseng C. A. Meyer) and liver cancer-related proteins and identify related signaling pathways, respectively. Network proximity was employed to identify active ingredients of red ginseng on liver cancer. Results : A compound-target network of red ginseng was constructed, which consisted of 363 edges between 53 ingredients and 121 protein targets. MAPK signaling pathway, PI3K-Akt signaling pathway, p53 signaling pathway, TGF-beta signaling pathway, and cell cycle pathway was significantly associated with protein targets of red ginseng. Network proximity results indicated that Ginsenoside Rg1, Acetic Acid, Ginsenoside Rh2, 20(R)-Ginsenoside Rg3, Notoginsenoside R1, Ginsenoside Rk1, 2-Methylfuran, Hexanal, Ginsenoside Rd, Ginsenoside Rh1 could be active ingredients of red ginseng against liver cancer. Conclusion : This study suggests that network-based approaches could be useful to explore potential mechanisms and active ingredients of red ginseng for liver cancer.

Preparative separation of minor saponins from Panax notoginseng leaves using biotransformation, macroporous resins, and preparative high-performance liquid chromatography

  • Liu, Fang;Ma, Ni;Xia, Fang-Bo;Li, Peng;He, Chengwei;Wu, Zhenqiang;Wan, Jian-Bo
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.105-115
    • /
    • 2019
  • Background: Ginsenosides with less sugar moieties may exhibit the better adsorptive capacity and more pharmacological activities. Methods: An efficient method for the separation of four minor saponins, including gypenoside XVII, notoginsenoside Fe, ginsenoside Rd2, and notoginsenoside Fd, from Panax notoginseng leaves (PNL) was established using biotransformation, macroporous resins, and subsequent preparative high-performance liquid chromatography. Results: The dried PNL powder was immersed in the distilled water at $50^{\circ}C$ for 30 min for converting the major saponins, ginsenosides Rb1, Rc, Rb2, and Rb3, to minor saponins, gypenoside XVII, notoginsenoside Fe, ginsenoside Rd2, and notoginsenoside Fd, respectively, by the enzymes present in PNL. The adsorption characteristics of these minor saponins on five types of macroporous resins, D-101, DA-201, DM-301, X-5, and S-8, were evaluated and compared. Among them, D-101 was selected due to the best adsorption and desorption properties. Under the optimized conditions, the fraction containing the four target saponins was separated by D-101 resin. Subsequently, the target minor saponins were individually separated and purified by preparative high-performance liquid chromatography with a reversed-phase column. Conclusion: Our study provides a simple and efficient method for the preparation of these four minor saponins from PNL, which will be potential for industrial applications.

Production of Red Ginseng Specific Ginsenosides $(Rg_2, Rg_3, Rh_1 and Rh_2)$ from Agrobacterium-transformed hairy Roots of Panax ginseng by Heat Treatment

  • Yang, Deok-Chun;Yang, Kye-Jin;Park, Yong-Eui
    • Journal of Photoscience
    • /
    • v.8 no.1
    • /
    • pp.19-22
    • /
    • 2001
  • It was reported that Red ginseng contains specific ginsenoside-Rg$_2$,-Rg$_3$,-Rh$_1$and -Rh$_2$, which show various pharmacological effects. However, production of these specific ginsenosides from Red ginseng is not commercially applicable because of high cost of the raw material, roots. This work was carried out to examine the production of Red ginseng specific ginsenosides from Agrobacterium-transformed hairy roots. Hairy roots were induced from 3 year-old root segment of Korean ginseng (Panax ginseng C.A. Meyer) after infection with Agrobacterium rhizogenes A4. Among many lines of hairybroots, KGHR-8A was selected. Steam heat treatment of hairy roots was resulted in the changes of ginsenoside composition. Eleven ginsenosides were detected in heat-treated hairy roots but eight in freeze dried hairy roots. In heat treated hairy root, content of ginsenoside-Rb$_1$,Rb$_2$,Rc, Rd, Re, Rf, and Rg$_1$were decreased compared to those of freeze dried hairy roots. However, heat treatment strongly enhanced the amount of Red ginseng specific ginsenogides (ginsenoside-Rg$_2$,-Rg$_3$,-Rh$_1$and -Rh$_2$). Amounts of ginsenoside-Rg$_3$,-Rh$_1$and -Rh$_2$ in heat-treated hairy roots were 2.58, 3.62 and 1.08 mg/g dry wt, respectively, but these were detected as trace amount in hairy roots without heat treatment. Optimum condition of heat treatment for the production of Red ginseng specific ginsenoside was 2 h at 105$^{\circ}C$. This result represents that Red ginseng specific ginsenoside can be producted from hairy roots by steam heat treatment.

  • PDF

Comparison of Chemical Properties of Soil and Ginsenoside Content of Ginseng under Organic and Conventional Cultivation Systems (유기농 인삼과 관행 인삼의 토양화학성 및 진세노이드 함량 비교)

  • Mo, Hwang-Sung;Lim, Jin-Soo;Yu, Jin;Park, Kee-Choon
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.3
    • /
    • pp.509-522
    • /
    • 2015
  • Organic ginseng farming has rapidly increased in response to consumer demand for a safe product which improves health. Differences in soil nutrient concentration and ginsenoside content between organic and conventional ginseng farming have, however, not yet been properly studied. Therefore the aim of the present study was to compare soil nutrient concentration and ginsenoside content between these two farming systems. $NO_3-N$, $P_2O_5$, and K were significantly different between organic and conventional ginseng farming. The total content of ginsenoside and individual ginsenoside components were higher in organically grown ginseng than in ginseng from conventional farming, although there is no significant difference. Particularly, protopanaxadiol saponins were higher than protopanaxatriol saponins in ginseng from organic farming compared to ginseng produced by conventional farming. $NO_3-N$ content in soils showed a negative correlation with the content of ginsenosides $Rb_2$ and Rd. In addition, $P_2O_5$ showed a negative correlation with ginsenosides $Rb_1$, Rc, and PD/PT ratio. Organic matter showed a positive crrelation with ginsenosides Re. To increase the ginsenoside content of ginseng, we recommend increasing organic matter and decreasing $NO_3-N$ and $P_2O_5$ contents in the soil.

Screening for Ginseng-Fermenting Microorganisms Capable of Biotransforming Ginsenosides (Ginsenoside 전환이 가능한 인삼 발효 미생물의 선별)

  • Kim, Hee-Gyu;Kim, Ki-Yeon;Cha, Chang-Jun
    • Korean Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.142-146
    • /
    • 2007
  • Panax ginseng has been drawing world-wide attention since it was used for medicinal purposes and its effects was discovered in scientific manners. However, it is necessary to develope new ginseng products as functional foods to compete with western ginseng. Fermented ginseng could be an excellent solution, where useful probiotics are provided and ginsenosides are specifically transformed to functional forms. In this study, we investigated the growth and ginsenoside biotransformation by 21 Bacillus strains isolated from Chongkukjang and 12 lactic acid bacteria. 2.5% (w/v) and 1% (w/v) of ginseng were used in culture media containing only ginseng powder as a sole nutrient source, and their biotransformation abilities were tested after the growths were checked. All used Bacillus strains and lactic acid bacteria were able to grow well in ginseng powder media at higher levels than $10^{7}\;CFU/ml$. Most of Bacillus strains displayed ginsenoside transformation in a strain-specific manner. Therefore, the results of this study demonstrated that the strains tested in this study could be used as potential starters for the ginseng fermentation.

Quantitative Analysis of Ginsenosides in Red Ginseng Extracted under Various Temperature and Time (홍삼의 추출 시간 및 온도에 따른 Ginsenosides 함량 비교분석)

  • Yang, Byung-Wook;Han, Sung-Tai;Ko, Sung-Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.37 no.4 s.147
    • /
    • pp.217-220
    • /
    • 2006
  • This study compared the contents of ginsenoside according to the extract conditions of red ginseng to provide basic information for developing functional food using red ginseng. According to the result, the content of crude saponin was highest in 72 hours of extraction at $82^{\circ}C$ (RG-823). The content of prosapogenin (ginsenoside $Rh_1,\;Rh_2,\;Rg_2,\;Rg_3$) was highest in 48 hours of extraction, and followed by 72 and 24 hours at $82^{\circ}C$. And at $93^{\circ}C$ the prosapogenin contents were highest in the order of 48 hours, and next in 24 and 72 hours. In addition, ginsenoside $Rb_1,\;Rb_2$ Rc and Re were not detected in 72 hours of extraction at $93^{\circ}C$ (RG-933) presumedly due to hydrolysis, but ginsenoside Rd, Rf and $Rg_1$ were detected as long as 72 hours of extraction. These results show that protopanaxatriol group is relatively more resistant to heat than protopanaxadiol group.

The Action Mechanism of several Ginsenosides in their Regulatory Action on the ACtivities of Adenylate Cyclase and Guanylate Cyclase (몇가지 진세노시드들의 아데닐산 고리화 효소와 구아닐산 고리화 효소의 활동성들에 대한 조절작용에 있어서의 작용 메카니즘)

  • 서기림;문종건
    • Journal of Ginseng Research
    • /
    • v.7 no.2
    • /
    • pp.148-155
    • /
    • 1983
  • The effects of the five ginsenosides on the activities of particulate adenylate cyclase and particulate guanylate cylase of rat brain have been studied. The range of concentrations of ginsenosides were between 10$\mu\textrm{g}$ and 500$\mu\textrm{g}$ per 500${mu}ell$ reaction mixture, Also, the effects of three ginsenosides on the activity of soluble guanylate cylace have been studied in the same range of concentrations as in particulate adenylate cyclase. Only ginsenoside Re has shown the reciprocal feeects when tested with particulated adenylate cyclase and particulate guanylated cyclase. Regulatory action of the several mononucleotides on the activities of adenylate cyclase and guanylate cyclase was examined. Ginsenoside Rd-inhibited adenylate cyclase was activated in great extent by the addition of increasing amount of GMP. On the other hand, ginsenoside Rc-activated guanylate cyclase was inhibited by the addition of increasing amount of AMP and GMP. The fact that the stimulatory action of GMP is observed only with particulated adenylate cyclase but not with soluble suanylate cyclase suggests that the action is membrane-related one. The competitive action was observed between ginsenoside Rb2 and dopamine in their binding to the receptors. This result is clear-cut evidence that the ginsenoside Rb2 binds specifically to $\beta$-adrenergic receptors.

  • PDF

A Chemical Study of the Saponins and Flavonoids of Dwarf Ginseng (Panax trifolius L.) and Its Comparison to Related Species in the Araliaceae (왜생삼 (Panax trifolius L.)의 사포닌과 프라보노이드의 화학적 연구 및 오가과에 속하는 유연종과의 성분 비교연구)

  • Lee Taikwang M.;Marderosian Ara Der
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.141-146
    • /
    • 1988
  • Dwarf ginseng (Panax trifolius L.) is a member of the ginseng family (Araliaceae). which is indigenous to North America and is distributed from Southern Canada to the Northern United States. In total. nine compounds were isolated from the leaves of Dwarf gineng. Of these. four were identified as flavonoids and five were found to be ginsenosides. Two of the flavonoids were identified to be kaempferol-3. 7-dirhamnoside and kaempferol-3-gluco-7-rhamnoside. Four of the ginsenosides were identified as notoginsenoside-Fe. ginsenoside-Rd. ginsenoside-Rc and $ginsenoside-Rb_1$ The common aglycone of these ginsenosides was shown to be (20S)-protopanaxadiol. The identification of flavonoids and ginsenosides from the root. stem. leaf. flower and fruit of Dwarf ginseng was detected by Two-Dimensional Thin-Layer Chromatography (2D-TLC) and High Performance Liquid Chromatography (HPLC). The quantitation of flavonoids and ginsenosides from the root. stem. leaf. flower and fruit of Dwarf ginseng and related species such as Korean gineng (Panax ginseng C.A. Meyer) and American ginseng (Panax quinquefolium L.) was analyzed by HPLC only. Three flavonoids (Kaempferol derivatives) labelled compound 1 $(10.8\%)$, compound 3 ($2.8\%$), and compound 4 ($8.4\%)$ were found in the root of Dwarf ginseng but not found in the roots of Korean ginseng and American ginseng. This is the first time that flavonoids have been found and identified in roots of the ginseng family (Araliaceae).

  • PDF

Metabolism of Ginseng Saponins by Human Intestinal Bacteria (Park II) (사람의 장내세균에 의한 인삼 사포닌의 대사(제2보))

  • Hasegawa, Hideo;Ha, Joo-Young;Park, Se-Ho;Matumiya, Satoshi;Uchiyama, Masamori;Huh, Jae-Doo;Sung, Jong-Hwan
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.1
    • /
    • pp.35-41
    • /
    • 1997
  • Following ginsenoside-Rb1-hydrolyzing assay, strictly anaerobic bacteria were isolated from human feces and identified as Prevotella oris. The bacteria hydrolyzed ginsenoside Rb1 and Rd to $20-O-{\beta}-D-glucopyranosyl-20(S)-protopanaxadiol$ (I), ginsenoside Rb2 to $20-O-[{\alpha}-L-arabinofuranosyl (1{\rightarrow}6)-{\beta}-D-glucopyranosyl] - 20(S)-protopanaxadiol$ (ll) and ginsenoside Rc to $20-O-[{\alpha}-L-arabinofuranosyl (1{\rightarrow} 6){\beta}-D-g1ucopyranosyl]-20(S)-protopanaxadiol$ (III) like fecal microflora, but did not attack ginsenoside Re nor Rgl (Protopanaxatriol-type). Pharmacokinetic studies of ginseng saponins was also performed using specific pathogen free rats and demonstrated that the intestinal bacterial metabolites I-111, 20(S)- protopanaxatriol(IV) and 20(S)-protopanaxadiol(V) were absorbed from the intestines to $blood(0.4-5.1\;{\mu}g/ml)$ after oral administration with total saponin(1 g/kg/day).

  • PDF