• Title/Summary/Keyword: ginsenoside $Rh_3$

Search Result 218, Processing Time 0.026 seconds

Nutritional components and physiological activities of kombucha containing ginseng sprouts (새싹인삼 함유 콤부차의 영양성분 및 생리활성)

  • Hee Yul Lee;Ga Young Lee;Kye Man Cho;Ok Soo Joo
    • Food Science and Preservation
    • /
    • v.31 no.4
    • /
    • pp.645-659
    • /
    • 2024
  • In this study, the physicochemical properties, nutritional components, and antioxidant activities of kombucha containing ginseng sprouts (control kombucha, CT; strawberry kombucha, ST ; strawberry kombucha with 2% ginseng sprout, ST+GS) were analyzed for comparison of quality characteristics. The total content of free amino acids in ST+GS (273.38 mg/100 mL) was 3.2-14.5 times higher than in CT (18.9 mg/100 mL) and ST (84.9 mg/100 mL). The total mineral content in ST+GS (63.99 mg/100 mL) was 3.3-4.1 times higher than those of CT and ST (15.45 and 19.28 mg/100 mL). The contents of soluble phenolic and soluble flavonoid were 1.2 mg GAE/mL and 0.14 mg RE/mL in ST+GS. Several ginsenosides were detected only in ST+GS; ginsenoside Rg2 (2.4 mg/100 mL), Rh1 (4.5 mg/100 mL), F2 (9.0 mg/100 mL), Rg3 (4.6 mg/100 mL), and compound K (7.8 mg/100 mL) were detected. The content of phenolic acids was 1.2-1.5 times higher in ST+GS than in CT and ST. The amount of flavonol of ST+GS was not significantly different from CT but was 1.4 times higher than in ST. In terms of antioxidant activities, the values of ST+GS were significantly higher in comparison to other kombucha samples. These results confirmed that incorporating ginseng sprouts amplifies the advantages of kombucha.

Analysis of Physicochemical Properties of Red Ginseng Powder Based on Particle Size (홍삼분말 입자크기에 따른 이화학적 특성 분석)

  • Choi, Hee Jeong;Lee, Sang Yoon;Lee, Jung Gyu;Park, Dong Hyeon;Bai, Jing Jing;Lee, Byung-Joo;Kim, Yoon-Sun;Cho, Youngjae;Choi, Mi-Jung
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.225-232
    • /
    • 2017
  • Most of the red ginseng (RG) products contain active substances derived from hot water or alcohol extraction. Since active substances of RG are divided into two types - water-soluble and liposoluble - water or alcohol is needed as an extraction solvent and this leads the different extraction yields and components of the active substances. To overcome the limit, whole red ginseng powder can be used and consumed by consumers. In this study, the physicochemical properties and extractable active substance contents of variable-sized RG powder ($158.00{\mu}m$, $8.45{\mu}m$, and $6.33{\mu}m$) were analyzed, and dispersion stability was measured to investigate the suitable size of RG powder for industrial processing. In the results, no significant difference was found from the changes in color intensity and thiobarbutric acid tests at $4^{\circ}C$, $25^{\circ}C$, and $40^{\circ}C$ for 4 weeks. There was no significant difference on the production of antioxidants and ginsenoside among the samples (p>0.05). In dispersion stability, $RG-158.00{\mu}m$ was precipitated immediately, and the dispersion stabilities between $RG-8.45{\mu}m$ and $RG-6.33{\mu}m$ showed no significant difference. It implies that fine RG is suitable for the production process. With further study, it seemed that the physicochemical effects of RG particle sizes can be clearly revealed.

Determination of the Antioxidant Capacity of Korean Ginseng Using an ORAC Assay (ORAC Assay 에 의한 인삼의 항산화 활성 연구)

  • Kim, Sung-Hwan;Kim, Young-Mok
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.17 no.3
    • /
    • pp.393-401
    • /
    • 2007
  • This study was performed to investigate the antioxidant activity of Korean ginseng using an ORAC(Oxygen Radical Absorbance Capacity) assay. Four fractions each (80% ethanol, ethyl acetate, water saturated 1-butanol, and water) were obtained from different ginseng samples (White Ginseng: ; 6 yrs-., 5 yrs-., ; Cork Ginseng: ; 5 yrs-., 4 yrs-.). The saponin content of each fraction was quantified by LC/MS, and the antioxidant capacity of the ginseng was measured by the ORAC assay. The ORAC method, which was recently validated using automatic liquid handling systems, has been adapted for manual handling with the use of a conventional fluorescence microplate reader. Furthermore, the ORAC assay provides a direct measure of hydrophilic chain-breaking antioxidant capacity against peroxy radical, which is the exiting and emission of 2,2'-Azobis (2-methylpropionamidine)-dihychloride (AAPH). As a result of our experiments, ginsenosides Rg1 and Rb1 were the two major saponins found in the ginseng samples, and Rc, Rb2, Re, Rd, Rg3, and Rh1 were detected in a small quantities. For the antioxidant capacities of the fractions (80% ethanol, ethyl acetate, butanol, and water), we found that the organic solvent fraction had similar antioxidant capacities, and were higher than the capacity of the water fraction. When determining the similarities in each fraction, only the ethyl acetate fraction showed similarity compared to other fractions (p>0.05). The antioxidant capacity of ginseng may come from phenolic compounds and some nonpolar saponins. However, based on the results of this study, we hypothesize that some acidic polysaccharides and other biological components may contribute to its antioxidant capacity. Additional research is required to determine other possible biological response modifiers that contribute to the antioxidant capacity of ginseng.

  • PDF

Effects of Fermented Red Ginseng Extracts on Hyperglycemia in Streptozotocin-induced Diabetic Rats

  • Kim, Hyun-Jeong;Chae, In-Gyeong;Lee, Sung-Gyu;Jeong, Hyun-Jin;Lee, Eun-Ju;Lee, In-Seon
    • Journal of Ginseng Research
    • /
    • v.34 no.2
    • /
    • pp.104-112
    • /
    • 2010
  • Fermented red ginseng (FRG) was prepared by inoculating 0.1% Lactobacillus fermentum NUC-C1 and fermenting them at $40^{\circ}C$ for 12 hours. The ginsenoside contents of FRG were increased compared with those of red ginseng (RG). Moreover, the levels of the ginsenosides Rg2, Rg3, and Rh2 in FRG increased significantly. In an oral glucose tolerance test (OGTT), blood glucose levels were lower in animals fed with RG and FRG extracts than in normal controls. In particular, FRG extracts in OGTT were superior to RG extracts. The antidiabetic effects of FRG in streptozotocin (STZ)-induced diabetic rats were investigated. Rats were divided into four groups: normal control, diabetes mellitus (DM), FRG administered at 100 mg/kg, and FRG administered at 200 mg/kg groups. FRG extracts were orally administered to each treatment group for 3 weeks, and blood glucose, insulin, and lipid levels of each group were determined. Orally administered FRG extracts significantly reduced blood glucose levels and increased plasma insulin levels in diabetic rats. Additionally, the activities of disaccharidases, including sucrase, lactase, and maltase, were decreased significantly in the FRG groups. FRG groups also had reduced triglyceride and total cholesterol levels, compared with the DM group. These results suggest that FRG may have antidiabetic effects in STZ-induced diabetic rats.

Steaming and Ultrasonic extraction conditions for enhancing the ginsenoside contents and anti-aging efficacy of the Ginseng sprout leaf/stem (새싹삼 잎 줄기의 진세노사이드 함량 및 항노화 효능 증진을 위한 증숙 및 추출조건)

  • Lee, Jong Sub;Kim, Ji Young;Han, Bok Nam;Kim, Ki-Seok;Cho, Hang-Eui;Cha, Young-Kwon;Choung, Eui Su
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.118-118
    • /
    • 2018
  • 인삼은 우리나라에서 오랜 역사동안 많은 연구가 진행되어 왔으며, 현재는 다양한 방법으로 홍삼과 흑삼으로 만들어 식품, 화장품, 의약품 등 다양한 방면으로 사용하고 있다. 본 연구에서 시중에서 구매한 새싹삼(인삼새싹) 잎/줄기에 함유된 진세노사이드(Re, Rg1, Rb1, Rg3, Rh1) 함량을 높이기 위하여 증숙과 초음파 추출조건에 관한 연구를 수행하여 우수한 항노화 소재를 개발하기 위하여 실시하였다. 실험은 새싹삼 잎/줄기를 증숙 온도와 시간의 조건에서 진세노사이드 함량이 가장 높은 조건을 선정하였으며, 선정된 조건의 새싹삼 잎/줄기에 파장과 출력에 대한 조건으로 초음파 추출을 진행하여 진세노사이드가 가장 높은 함량을 보이는 조건을 선정하였다. 그 결과 새싹삼 잎/줄기추출물(GSE; Ginseng Sprout Extract)의 진세노사이드 함량은 4.8 mg/g으로 확인되었으나 증숙공정을 통해 8.82 mg/g으로 함량이 증가되었으며, 상기 증숙된 새싹삼 잎/줄기에 초음파공정을 적용하여 추출한 새싹삼 잎/줄기초음파추출물(SU-GSE; Steaming & dry Ultrasonication-Ginseng Sprout Extract)에서는 최대 10.65 mg/g으로 함량이 증가되었다. 반면, 새싹삼 뿌리의 진세노사이드는 2.30 mg/g으로 확인되었으나 증숙공정을 통해 4.95 mg/g으로 함량이 증가되었으며, 초음파추출공정을 통해 최대 5.82 mg/g으로 함량이 증가된 것을 확인할 수 있었으나, 새싹삼 잎/줄기에 비해 진세노사이드 함량이 낮은 것을 확인하였다. 항노화 소재로의 활용가능성을 평가하기 위하여 새싹삼 잎/줄기추출물 GSE와 SU-GSE에 대한 세포생존률, 항산화 및 항노화에 대한 효능평가를 진행하였으며 GSE의 경우 $100{\mu}g/ml$에서 세포생존률이 82.4%를 보인 반면 SU-GSE에서는 $1,000{\mu}g/ml$의 농도에서 101.8%의 세포 생존률을 보였다. 항산화 활성의 경우 GSE와 SU-GSE $100{\mu}g/ml$ 농도에서 각각 52%와 81%의 항산화 활성을 나타냄으로써 SU-GES의 조건에서 항산화 활성이 우수한 것으로 확인되었다. 또한, 항노화 활성에 대한 실험결과 MMP-1 유전자 발현에 대한 억제율을 비교한 결과 GSE와 SU-GES $100{\mu}g/ml$의 농도에서 각각 18%와 29%의 억제율을 보임에 항노화 소재로의 활용가능성을 확인하였다.

  • PDF

Changes in Saponins Sugars and Amino Acids of White Ginseng during Storage Following Gamma Irradiation and Phosphine Fumigation (감마선과 Phosphine 처리된 백삼의 저장 중 사포닌, 당 및 아미노산 함량의 변화)

  • Kwon, Joong-Ho;Kim, Kyung-Tae;Kwon, Hoon;Park, Nan-Young;Chung, Hyung-Wook;Lee, Jung-Eun;Noh, Mi-Jung;Byun, Myung-Woo
    • Food Science and Preservation
    • /
    • v.6 no.3
    • /
    • pp.297-302
    • /
    • 1999
  • To investigate an alternative technique to phosphine fumigation, being used for controlling storage insects of dried ginseng, comparative effects of gamma irradiation (5 kGy) and fumigation on the content of moisture, saponins, free sugars, and amino acids of commercially-packaged white ginseng were evaluated immediately after and at the 6th month of storage at 20$^{\circ}C$ and 70% RH after both treatments. The initial moisture content (8.44%) of the sample was not changed with the treatments, and maintained the 10% levels of moisture until 6 months of storage. Major ginsenosides were stable to both treatments, but they showed some reduced content in the control and fumigated samples at the 6th month of storage. Gamma irradiation caused some decrease in the content of free sugars and the subsequent storage of the sample resulted in a further reduction in their content in the order of irradiated, fumigated and control samples. Although irradiation and fumigation brought about a decrease in the content of fee amino acids by about 5%, however the storage period for 6 months was shown more influential than the treatments used for the improvement of biological quality in stored white ginseng.

  • PDF

Biotransformation of Panax ginseng extract by rat intestinal microflora: identification and quantification of metabolites using liquid chromatography-tandem mass spectrometry

  • Dong, Wei-Wei;Zhao, Jinhua;Zhong, Fei-Liang;Zhu, Wen-Jing;Jiang, Jun;Wu, Songquan;Yang, Deok-Chun;Li, Donghao;Quan, Lin-Hu
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.540-547
    • /
    • 2017
  • Background: In general, after Panax ginseng is administered orally, intestinal microbes play a crucial role in its degradation and metabolization process. Studies on the metabolism of P. ginseng by microflora are important for obtaining a better understanding of their biological effects. Methods: In vitro biotransformation of P. ginseng extract by rat intestinal microflora was investigated at $37^{\circ}C$ for 24 h, and the simultaneous determination of the metabolites and metabolic profile of P. ginseng saponins by rat intestinal microflora was achieved using LC-MS/MS. Results: A total of seven ginsenosides were detected in the P. ginseng extract, including ginsenosides Rg1, Re, Rf, Rb1, Rc, Rb2, and Rd. In the transformed P. ginseng samples, considerable amounts of deglycosylated metabolite compound K and Rh1 were detected. In addition, minimal amounts of deglycosylated metabolites (ginsenosides Rg2, F1, F2, Rg3, and protopanaxatriol-type ginsenosides) and untransformed ginsenosides Re, Rg1, and Rd were detected at 24 h. The results indicated that the primary metabolites are compound K and Rh1, and the protopanaxadiol-type ginsenosides were more easily metabolized than protopanaxatriol-type ginsenosides. Conclusion: This is the first report of the identification and quantification of the metabolism and metabolic profile of P. ginseng extract in rat intestinal microflora using LC-MS/MS. The current study provided new insights for studying the metabolism and active metabolites of P. ginseng.

Establishment of Optimal Fermentation Conditions for Steam-dried Ginseng Berry via Friendly Bacteria and Its Antioxidant Activities (생체친화성 균주에 의한 인삼열매증포 추출물의 최적발효조건 및 항산화활성)

  • Kim, Seung Tae;Kim, Hee Jung;Jang, Su Kil;Lee, Do Ik;Joo, Seong Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.77-83
    • /
    • 2013
  • In this study, we observed optimal conditions and suitable bacteria for the fermentation of steam-dried ginseng berry extracts (SGB) and determined antioxidant effects of the fermented extracts. Five bacteria (Lactobacillus fermentarum, L. plantarum, L. brevis, L. casei, Bacillus subtillis) were examined on their growth activities and viabilities in various culture temperatures ($25-35^{\circ}C$) and concentrations (25-100%). L. plantarum was considered to be the most suitable bacteria for the fermentation in both growth activity and viability. Moreover, the extracts fermented with L. plantarum showed more potent antioxidant efficacy in both 1,1-diphenyl-2-picrylhydrazyl radical and hydroxyl radical scavenging assay. High performance liquid chromatography analysis revealed that fermentation with L. plantarum changed the contents and components of ginsenosides. In conclusion, these data suggest that L. plantarum efficiently ferment SGB and the fermented extracts may have therapeutical values against oxidative stress and be a good candidate in adjuvant therapy where ginsenoside would be the main composition.

Effects of Extraction Temperature and Time on Saponin Content and Quality in Raw Ginseng (Panax ginseng) Water Extract (수삼의 추출 온도 및 시간이 물 추출액의 사포닌 함량 및 품질에 미치는 영향)

  • Han, Jin-Soo;Li, Xiangguo;Park, Yong-Jun;Kang, Sun-Joo;Nam, Ki-Yeul;Choi, Jae-Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.5
    • /
    • pp.352-356
    • /
    • 2009
  • In this study, raw ginseng water extract solutions were analyzed to set up the functional saponin content and quality optimization condition. The highest saponin content among the total raw ginseng water extracts was $74.6\;mg/100\;m{\ell}$ which was extracted at $75^{\circ}C$ for 24 hours. In addition, the saponin content decreased according to the increased extraction temperature and time. The highest total content of $Rb_2$ and Re was $19.9\;mg/100\;m{\ell}$ at $75^{\circ}C$ for 12 hours which decreased according to the increased extracted temperature and time. The highest prosapogenin ($Rg_2\;+\;Rg_3\;+\;Rh_1$) content among the total raw ginseng water extracts was $28.6\;mg/100\;m{\ell}$ which was extracted at $85^{\circ}C$ for 36 hours. The reducing sugar content, sweetness and turbidity were increased according to the increased extraction temperature and time. But pH were decreased according to the increased extracted time.

Effects of fermented black ginseng on wound healing mediated by angiogenesis through the mitogen-activated protein kinase pathway in human umbilical vein endothelial cells

  • Park, Jun Yeon;Lee, Dong-Soo;Kim, Chang-Eop;Shin, Myoung-Sook;Seo, Chang-Seob;Shin, Hyeun-Kyoo;Hwang, Gwi Seo;An, Jun Min;Kim, Su-Nam;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.524-531
    • /
    • 2018
  • Background: Fermented black ginseng (FBG) is produced through several cycles of steam treatment of raw ginseng, at which point its color turns black. During this process, the original ginsenoside components of raw ginseng (e.g., Re, Rg1, Rb1, Rc, and Rb2) are altered, and less-polar ginsenosides are generated (e.g., Rg3, Rg5, Rk1, and Rh4). The aim of this study was to determine the effect of FBG on wound healing. Methods: The effects of FBG on tube formation and on scratch wound healing were measured using human umbilical vein endothelial cells (HUVECs) and HaCaT cells, respectively. Protein phosphorylation of mitogen-activated protein kinase was evaluated via Western blotting. Finally, the wound-healing effects of FBG were assessed using an experimental cutaneous wounds model in mice. Results and Conclusion: The results showed that FBG enhanced the tube formation in HUVECs and migration in HaCaT cells. Western blot analysis revealed that FBG stimulated the phosphorylation of p38 and extracellular signal-regulated kinase in HaCaT cells. Moreover, mice treated with $25{\mu}g/mL$ of FBG exhibited faster wound closure than the control mice did in the experimental cutaneous wounds model in mice.