• Title/Summary/Keyword: ginseng soil

Search Result 520, Processing Time 0.023 seconds

Relationship Between Yield of Seedling and Soil Physico-Chemical Components of Ban-Yang-Jik Nursery in Ginseng Plantation (산지(産地) 반양직묘포(半養直苗圃)에서의 묘삼수량(苗蔘收量)과 토양이화학성간(土壤理化學性間)의 관계조사(關係調査))

  • Lee, Jong-Chul;Byen, Jeong-Su;Ahn, Dai-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.2
    • /
    • pp.177-181
    • /
    • 1988
  • To get the basic information about ginseng seedling production, yield of ginseng seedling and soil physico-chemical components of Ban-Yang-Jik (semimodified soil) nursery in 29 farmer's field were investigated. The number of available seedling per Kan (Kan means $180{\times}90cm$ area) is $362{\pm}226$. Root weight per seedling was negatively correlated with ammount of fine and extremely fine sand. Positive correlations were shown between pH and OM, K, Ca and Mg, and also between EC and Ca, Mg and ammonium and nitrate nitrogen in soil of nursery. There were significant linear relations between root weight and OM, K, Ca and Mg in soil of nursery. On the other hand, quadratic relation was held between the root weight and $P_2O_5$, but the root weight has no correlation with nitrogen. The nitrogen contents of soil might not influence on the growth of ginseng seedling as greatly as those of $P_2O_5$, K and Ca. The contents of $P_2O_5$, K and Ca in root were increased with increase of the contents of $P_2O_5$, K and Ca in soil of nusery, respectively. It showed the linear correlation between the root weight and $P_2O_5$ and Ca, otherwise quadratic correlation between the root weight and K in root.

  • PDF

The Adaptation of Ginseng Production of Semi-arid Environments The Example of British Columbia, Canada

  • Bailey, W.G.
    • Proceedings of the Ginseng society Conference
    • /
    • 1990.06a
    • /
    • pp.155-167
    • /
    • 1990
  • Ginseng Is renowned for both its medicinal and herbal uses and successful cultivation of Panax ginseng in Asia and Panax quinquefolium in North America has until recently taken place in the native geographical ranges of the plants. As a consequence of the potential high capital return and anticipated increases in consumer consumption, commercial cultivation of American ginseng now occurs well outside the native range of the plant in North America. In fact, the region of greatest expansion of cultivation is in the semi-arid interior region of British Columbia, Canada. Linked with this expansion is the potential domination of the ginseng industry by agricultural corporations. In the interior of British Columbia, the native deciduous forest environment of eastern North America is simulated with elevated polypropylene shade and a surface covering of straw mulch. The architecture of these environments is designed to permit maximum machinery usage and to minimize labor requirements. Further, with only a four- years growth cycle, plant densities in the gardens are high. In this hot, semi-arid environment, producers believe they have a competitive advantage over other regions in North America because of the low precipitation rates. This helps to minimize atmospheric humidity such that the conditions for fungal disease development are reduced. If soil moisture level become limited, supplemental water can be provided by irrigation. The nature of the radiation and energy balance regimes of the shade and many environments promotes high soil moisture levels. Also, the modified environment redlines soil heating. This can result in an aerial environment for the plant that is stressful and a rooting zone environment that is suloptimal. The challenge of further refining the man modified environment for enhanced plant growth and health still remains. Keywords Panax ginseng, Panax quinquefolium, cultivation, ginseng production.

  • PDF

Residues of Heavy metals in Culture Environment of Ginseng at Gyeongbuk, Korea (경북지역 인삼 재배 환경 중 중금속의 잔류)

  • Park Moon-Ki;Kim Jung-Ho
    • Journal of Environmental Science International
    • /
    • v.15 no.2
    • /
    • pp.163-167
    • /
    • 2006
  • To obtain the safety evaluation of the ginseng, residues of heavy metals in culture environment of ginseng on Punggi and Sangju, Kyeongbuk are surveyed. The concentration for component of ginseng on Punggi and Sangju were 14.12mg/kg and 15.74mg/kg, respectively. The concentration for general component such as crude fiber, ash, crude lipid, crude protein, carbohydrate, of ginseng were coincided between Punggi and Sangju. The concentration for As, Pb, Cd, and Hg in soil on Punggi were 14.24 ppb, 43.13 ppb, 8.73 ppb and 0.82 ppb, respectively. The concentration for As, Pb, Cd, and Hg in soil on Sangju were 19.20 ppb, 54.82 ppb, 15.90 ppb and 1.04, respectively. Residual heavy metals are not polluted in the soil with culture ginseng on Punggi and Sangju. The concentration for As, Pb, Cd, and Hg with ginseng on Punggi were 29.30ppb, 21.78 ppb, 1.32 ppb and 2.72 ppb, respectively. The concentration for As, Pb, Cd, and Hg with ginseng on Sangju were 3.22 ppb, 24.43 ppb, 1.44 ppb and 4.74 ppb, respectively. Also the detection concentration for As, Pb, Cd, and Hg in ginseng were also lower than the Korea Food & Drug Administration advisory level for heavy metal in herbal medicines. Residual heavy metals are not polluted in the ginseng on Punggi and Sangju at Kyeongbuk, Korea.

Effect of Substrate on the Production of Korean Ginseng(Panax ginseng C.A. Meyer) in Nutrient Culture (한국인삼 양액재배시 배지의 영향)

  • Dong Sik Yang;Gung Pyo Lee;Park, Kuen Woo
    • Journal of Bio-Environment Control
    • /
    • v.11 no.4
    • /
    • pp.199-204
    • /
    • 2002
  • To overcome a decrease of Korean ginseng production caused by successive cropping, we have tried to develop a nutrient culture system for Korean ginseng production. For determining the optimal substrate, mixture of sand and TKS-2 (S+T), peatmoss (P), reused rockwool (RR), and granular rockwool (GR) were investigated. The overall physico-chemical properties of RR fell into the reported optimal range for the ginseng cultivation. However, bulk density of S+T was a little higher than that of soil in Korean ginseng fields. The top fresh weight of the ginseng was high in RR and S+T substrates. The root fresh and dry weights in the RR were remarkably greater than that in the conventional soil (CS) of Korean ginseng fields. In terms of ginseng quality, the vitamin C content of ginseng root in nutrient culture was higher than that in CS. However, the contents of crude saponin and total ginsenosides in ginseng between in the nutrient culture and in the soil culture did not show any significant differences.

Grouping the Ginseng Field Soil Based on the Development of Root Rot of Ginseng Seedlings (유묘 뿌리썩음병 진전에 따른 이산재배 토양의 유별)

  • 박규진;박은우;정후섭
    • Korean Journal Plant Pathology
    • /
    • v.13 no.1
    • /
    • pp.37-45
    • /
    • 1997
  • Disease incidence (DI), pre-emergence damping-off (PDO), days until the first symptom appeared (DUS), disease progress curve (DPC), and area under disease progress curve (AUDPC) were investigated in vivo after sowing ginseng seeds in each of 37 ginseng-cultivated soils which were sampled from 4 regions in Korea. Non linear fitting parameters, A, B, K and M, were estimated from the Richards' function, one of the disease progress models, by using the DI at each day from the bioassay. Inter- and intra-relationships between disease variables and stand-missing rate (SMR) in fields were investigated by using the simple correlation analysis. Disease variables of the root rot were divided into two groups: variables related to disease incidence, e.g., DI, AUDPC and A parameter, and variables related to disease progress, e.g., B, K and M parameters. DI, AUDPC, and DUS had significant correlations with SMR in ginseng fields, and then it showed that the disease development in vivo corresponded with that in fields. Soil samples could be separated into 3 and 4 groups, respectively, on the basis of the principal component 1 (PC1) and the principal component 2 (PC2), which were derived from the principal component analysis (PCA) of Richards' parameters, A, B, K and M. PC1 accounted for B, K and M parameters, and PC2 accounted for A parameter.

  • PDF

Review of Studies on Ginseng Replanting Problems (인삼 연작장해 연구에 대한 고찰)

  • 이종철;김홍진;오승환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.115-120
    • /
    • 1989
  • Universal characteristics of ginseng replanting problems appeared to be decrease in root yields due to root rot and inhibition of root growth. Incitants of ginseng replanting problems have not been clearly elucidated, however, it appeared to be a complex phenomenon with several pathogenic soil microorganisms and environmental changes in the soil due to decomposition of ginseng debris such as rootlets and shoots. Decomposition of ginseng debris may cause direct or indirect damage to the root. The effect of conventional fungicide on the control of the problems has not been recognized. However, it has been suggested that treatment with soil fumigants may solve the problems. Meanwhile paddy-rice and ginseng rotation system appeared to be the best way of solving the problems so far.

  • PDF

Seedling Growth of Ginseng (Panax ginseng C. A. Meyer) Affected by Composition of its Bed Soil and Height of Front Piller (약토 혼합비율과 해가림 전주 높이에 따른 인삼유묘의 생장)

  • Ahn, Mun-Sub;Kang, An-Seok;Kim, Se-Won;Lee, Se-Jong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.5
    • /
    • pp.340-346
    • /
    • 2003
  • This study was carried out to improve cultivation techniques by low cost and labour saving in ginseng (Panax ginseng C. A. Meyer) seedling production, by elucidating proper ratio virgin soil and organic fertilizer, suitable height of front piller. The obtained results are as follows ; The optimal ratio of white decomposition of virgin soil and organic fertilizer was 10:1 for good yield of standard seedling, The fittest height of front piller was 150 cm because of both good seedling growth and yield. The cost for production of seedling of ginseng could be reduced by both optimal ratio of virgin soil, organic fertilizer and selection of front piller height.

Translocation of Tolclofos-methyl from Ginseng Cultivated Soil to Ginseng (Panax ginseng C. A. Meyer) and Residue Analysis of Various Pesticides in Ginseng and Soil (토양 중 잔류된 Tolclofos-methyl의 인삼(Panax ginseng C. A. Meyer)에 대한 이행 및 잔류 특성)

  • Kim, Ji Yoon;Kim, Hea Na;Saravanan, Manoharan;Heo, Seong Jin;Jeong, Haet Nim;Kim, Jang Eok;Kim, Kwan Rae;Hur, Jang Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.3
    • /
    • pp.130-140
    • /
    • 2014
  • Recently, some of the previous studies reported that tolclofos-methyl is still exist in ginseng cultivated soil, even though it is has been banned for ginseng. Therefore, the current study was aimed to examine the levels of absorption and translocation of tolclofos-methyl from ginseng cultivated soil to ginseng root and leaf stem for the period of 1 year. For this study, ginseng plants were transplanted in pots and treated with $5.0mg\;kg^{-1}$ of tolclofos-methyl (50% WP). At the end of each interval periods (every three months) the samples (soil, roots and leaf stems) were collected and analyzed the absorption and translocation levels of tolclofos-methyl using gas chromatography and mass spectrometry (GC-MS). The limit of quantitation of tolclofos-methyl was found to be $0.02mg\;kg^{-1}$ and 70.0~120.0% recovery was obtained with coefficient of variation of less than 10% regardless of sample types. In this study, a considerable amount of translocation of tolclofos-methyl residues were found in soil (4.28 to $0.06mg\;kg^{-1}$), root (7.09 to $1.54mg\;kg^{-1}$) and leaf stem (0.79 to $0.69mg\;kg^{-1}$). The results show that the tolclofos-methyl was absorbted and translocated from ginseng cultivated soil to ginseng root and ginseng leaf stem and found to be decreased time-coursely. Secondly, we were also analyzed soil, root and leaf stems samples from Hongcheon, Cheorwon, Punggi and Geumsan by GC-MS/MS (172 pesticides), LC-MS/MS (74 pesticides). In this study, 43 different pesticides were detected ($0.01{\sim}7.56mg\;kg^{-1}$) in soil, root and leaf stem. Further, tolclofos-methyl was detected 4 times separately in root sample alone which is less ($0.01{\sim}0.05mg\;kg^{-1}$) than their maximum residual limit (MRL) in ginseng. Consequently, the results from both studies indicate the residues of tolclofos-methyl found in ginseng cultivated soil and ginseng ensuring their safety level. Moreover, long-term evaluations are needed in order to protect the soil as well as ginseng free from tolclofos-methyl residues.

Development of a Selective Medium for the Fungal Pathogen Cylindrocarpon destructans Using Radicicol

  • Kang, Yunhee;Lee, Seung-Ho;Lee, Jungkwan
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.432-436
    • /
    • 2014
  • The soil-borne ascomycete fungus Cylindrocarpon destructans causes ginseng root rot disease and produces various secondary metabolites such as brefeldin A and radicicol. The slow growth of this fungus compared with other plant pathogenic and saprophytic fungi in soil disturbs isolation of this fungus from soil and infected ginseng. In this study, we developed a selective medium for C. destructans using radicicol produced by this fungus. Supplementing 50 mg/L of radicicol to medium inhibited the mycelia growth of other fungi including Botrytis cinerea, Rhizoctonia solani and Alternaria panax, but did not affect the growth of C. destructans. In addition, conidia germination of other fungal species except for C. destructans was inhibited in submerged culture supplemented with radicicol. This medium provides a very efficient tool for isolating C. destructans and also can be used as an enrichment medium for this fungus.