DOI QR코드

DOI QR Code

Development of a Selective Medium for the Fungal Pathogen Cylindrocarpon destructans Using Radicicol

  • Kang, Yunhee (Department of Applied Biology, Dong-A University) ;
  • Lee, Seung-Ho (Ginseng Research Division, National Institute of Horticultural and Herbal Science) ;
  • Lee, Jungkwan (Department of Applied Biology, Dong-A University)
  • Received : 2014.08.05
  • Accepted : 2014.09.04
  • Published : 2014.12.01

Abstract

The soil-borne ascomycete fungus Cylindrocarpon destructans causes ginseng root rot disease and produces various secondary metabolites such as brefeldin A and radicicol. The slow growth of this fungus compared with other plant pathogenic and saprophytic fungi in soil disturbs isolation of this fungus from soil and infected ginseng. In this study, we developed a selective medium for C. destructans using radicicol produced by this fungus. Supplementing 50 mg/L of radicicol to medium inhibited the mycelia growth of other fungi including Botrytis cinerea, Rhizoctonia solani and Alternaria panax, but did not affect the growth of C. destructans. In addition, conidia germination of other fungal species except for C. destructans was inhibited in submerged culture supplemented with radicicol. This medium provides a very efficient tool for isolating C. destructans and also can be used as an enrichment medium for this fungus.

Keywords

References

  1. Ahn, I.-P. and Lee, Y.-H. 2001. A viral double-stranded RNA up regulates the fungal virulence of Nectria radicicola. Mol. Plant-Microbe Interact. 14:496-507. https://doi.org/10.1094/MPMI.2001.14.4.496
  2. Betina, V., Betinova, M. and Kutkova, M. 1966. Effects of cyanein on the growth and morphology of pathogenic fungi. Arch Mikrobiol. 55:1-16. https://doi.org/10.1007/BF00409151
  3. Cappellini, R. A. and Peterson, J. L. 1965. Macroconidium formation in submerged cultures by a nonsporulating strain of Gibberella zeae. Mycologia 57:962-966. https://doi.org/10.2307/3756895
  4. Chi, M.-H., Park, S.-Y., Kim, S. and Lee, Y.-H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111. https://doi.org/10.5423/PPJ.2009.25.1.108
  5. Chung, H.-S. 1975. Studies on Cylindrocarpon destructans (Zins.) Scholten causing root rot of ginseng. Rep. Tottori Mycol. Inst. 12:127-138.
  6. Evans, G. 1965. The antibiotic activity of Cylindrocarpon radicicola. Ph.D. thesis. University of Sydney, Sydney, Australia.
  7. Hopkins, D. L., Lobinske, R. J. and Larkin, R. P. 1992. Selection for Fusarium oxysporum f.sp. niveum race 2 in monocultures of watermelon cultivars resistant to Fusarium wilt. Phytopathology 82:290-293. https://doi.org/10.1094/Phyto-82-290
  8. Horakova, K. and Betina, V. 1976. Cytotoxic activity of macrocyclic metabolites from fungi. Neoplasma 24:21-27.
  9. Jung, B., Lee, S., Ha, J., Park, J.-C., Han, S.-S., Hwang, I., Lee, Y.-W. and Lee, J. 2013. Development of a selective medium for the fungal pathogen Fusarium graminearum using toxoflavin produced by the bacterial pathogen Burkholderia glumae. Plant Pathol. J. 29:446-450. https://doi.org/10.5423/PPJ.NT.07.2013.0068
  10. Klausner, R. D., Donaldson, J. G. and Lippincott-Schwartz, J. 1992. Brefeldin A: insights into the control of membrane traffic and organelle structure. J. Cell Biol. 116:1071-1080. https://doi.org/10.1083/jcb.116.5.1071
  11. Lee, J., Kim, H., Jeon, J.-J., Kim, H.-S., Zeller, K. A., Carter, L. L.A., Leslie, J. F. and Lee, Y.-W. 2012. Population structure of and mycotoxin production by Fusarium graminearum from maize in South Korea. Appl. Environ. Microbiol. 78:2161-2167. https://doi.org/10.1128/AEM.07043-11
  12. Leslie, J. F. and Summerell, B. 2006. The Fusarium laboratory manual. Blackwell Publishing, Ames, IA, USA.
  13. Punja, Z. K. 1997. Fungal pathogens of American ginseng (Panax quinquefolium) in British Columbia, Canada. Can. J. Plant Pathol. 19:301-306. https://doi.org/10.1080/07060669709500528
  14. Reeleder, R. D. and Brammall, R. A. 1994. Pathogenicity of Pythium species, Cylindrocarpon destructans, and Rhizoctonia solani to ginseng seedlings in Ontario. Can. J. Plant Pathol. 16:311-316. https://doi.org/10.1080/07060669409500736
  15. Schulte, T. W., Akinaga, S., Soga, S., Sullivan, W., Stensgard, B., Toft, D. and Neckers, L. M. 1998. Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperon 3:100-108. https://doi.org/10.1379/1466-1268(1998)003<0100:ARBTTN>2.3.CO;2
  16. Shin, J. H., Yun, B. D., Kim, H. J., Kim, S. J. and Chung, D. Y. 2012. Soil environment and soil-borne plant pathogen causing root rot disease of ginseng. Kor. J. Soil Sci. 45:370-376. https://doi.org/10.7745/KJSSF.2012.45.3.370
  17. Sweetingham, M. 1983. Studies on the nature and pathogenicity of soil-borne Cylindrocarpon spp. Ph.D. thesis. University of Tasmania.
  18. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Academic Press Inc. New York, USA.

Cited by

  1. Biological characteristics ofBacillus amyloliquefaciensAK-0 and suppression of ginseng root rot caused byCylindrocarpon destructans vol.122, pp.1, 2017, https://doi.org/10.1111/jam.13325
  2. Inhibition of heat-shock protein 90 enhances the susceptibility to antifungals and reduces the virulence of Cryptococcus neoformans/Cryptococcus gattii species complex vol.162, pp.2, 2016, https://doi.org/10.1099/mic.0.000222