• Title/Summary/Keyword: ginseng root rot

Search Result 154, Processing Time 0.036 seconds

Involvement of Growth-Promoting Rhizobacterium Paenibacillus polymyxa in Root Rot of Stored Korean Ginseng

  • Jeon, Yong-Ho;Chang, Sung-Pae;Hwang, In-Gyu;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.881-891
    • /
    • 2003
  • Paenibacillus polymyxa is a plant growth-promoting rhizobacterium (PGPR) which can be used for biological control of plant diseases. Several bacterial strains were isolated from rotten roots of Korean ginseng (Panax ginseng C. A. Meyer) that were in storage. These strains were identified as P. polymyxa, based on a RAPD analysis using a P. polymyxa-specific primer, cultural and physiological characteristics, an analysis utilizing the Biolog system, gas chromatography of fatty acid methyl esters (GC-FAME), and the 16S rDNA sequence analysis. These strains were found to cause the rot in stored ginseng roots. Twenty-six P. polymyxa strains, including twenty GBR strains, were phylogenetically classified into two groups according to the ERIC and BOX-PCR analyses and 16S rDNA sequencing, and the resulting groupings systematized to the degrees of virulence of each strain in causing root rot. In particular, highly virulent GBR strains clustered together, and this group may be considered as subspecies or biovar. The virulence of the strains seemed to be related to their starch hydrolysis enzyme activity, but not their cellulase or hemicellulase activity, since strains with reduced or no starch-hydrolytic activity showed little or no virulence. Artificial inoculation of the highly virulent strain GBR-1 onto the root surfaces of Korean ginseng resulted in small brown lesions which were sunken and confined to the outer portion of the root. Ginseng root discs inoculated in vitro or two-year-old roots grown in soil drenched with the inoculum developed significant rot only when the inoculum density was $10^{6}-10^{7}$ or more colony-forming units (CFU) per ml. These results suggest that P. polymyxa might induce ginseng root rot if their population levels are high. Based on these results, it is recommended that the concentration of P. polymyxa should be monitored, when it is used as a biocontrol agent of ginseng, especially in the treatment of stored roots.

New root rot disease of Panax ginseng due to Ditylenchus destructor Thorne (감자썩이선충 (Ditylenchus destructor)에 의한 인삼의 새로운 근부병)

  • Ohh Seung H.;Lee S.K.;Lee J.H.;Han S.C.
    • Korean journal of applied entomology
    • /
    • v.22 no.3 s.56
    • /
    • pp.181-185
    • /
    • 1983
  • Ditylenchus destructor Thorne 1945 was found to be the causal organism of the new root rot disease of Panax ginseng, which occurred extensively in Dongseong area of Cheolweon-gun, Gangweon Province, Korea in 1982. Thirty-six percent of the investigated fields was damaged due to the potato rot nematode. Infected roots showed brown discoloration of cortex and suberization outside the cambium. Cortex of the severly infected roots became sponge-like in texture and cavity was produced in the central portion of the root. Only the severely infected ginseng plants exhibited sympotoms of sudden wilting of leaves. The number of potato rot nematode in such field soils was $8.5\~222/30g$ soil, while there was no such symptoms on leaves if the number was less than 7.

  • PDF

Specific Detection of Root Rot Pathogen, Cylindrocarpon destructans, Using Nested PCR from Ginseng Seedlings (Nested PCR 기법을 이용한 인삼 뿌리썩음병원균의 특이적 검출)

  • Jang, Chang-Soon;Lee, Jung-Ju;Kim, Sun-Ick;Song, Jeong-Young;Yoo, Sung-Joon;Kim, Hong-Gi
    • Research in Plant Disease
    • /
    • v.11 no.1
    • /
    • pp.48-55
    • /
    • 2005
  • Cylindrocarpon destructans is a soil-borne plant pathogenic fungus causing root rot on ginseng and trees. Rapid and exact detection of this pathogen was practiced on ginseng seedlings by nested PCR using speciesspecific primer set. The second round of PCR amplification by Dest 1 and Dest 4 primer set formed 400 bp of species-specific fragment of C. destructans from the product of first round of amplification by ITS 1 and ITS 4 primer set. In the PCR sensitivity test based on DNA density, nested PCR detected to the limit of one fg and it meant the nested PCR could detect up to a few spores of C. destructans. Also, nested PCR made it possible to detect the pathogen from ginseng seedlings infected by replantation on artificial infested soil. Our nested PCR results using species-specific primer set could be utilized for diagnosis of root rot disease in ginseng cultivation.

Direct Detection of Cylindrocarpon destructans, Root Rot Pathogen of Ginseng by Nested PCR from Soil Samples

  • Jang, Chang-Soon;Lim, Jin-Ha;Seo, Mun-Won;Song, Jeong-Young;Kim, Hong-Gi
    • Mycobiology
    • /
    • v.38 no.1
    • /
    • pp.33-38
    • /
    • 2010
  • We have successfully applied the nested PCR to detect Cylindrocarpon destructans, a major pathogen causing root rot disease from ginseng seedlings in our former study. The PCR assay, in this study, was used to detect the pathogen from soils. The nested PCR using internal transcribed spacer (ITS) 1, 4 primer set and Dest 1, 4 primer set maintained the specificity in soils containing various microorganisms. For a soil DNA extraction method targeting chlamydospores, when several cell wall disrupting methods were tested, the combination of lyophilization and grinding with glass beads, which broke almost all the chlamydospores, was the strongest. The DNA extraction method which was completed based on the above was simple and time-saving because of exclusion of unnecessary stages, and efficient to apply in soils. As three ginseng fields whose histories were known were analyzed, the PCR assay resulted as our expectation derived from the field information. The direct PCR method will be utilized as a reliable and rapid tool for detecting and monitoring C. destructans in ginseng fields.

Characteristics of Soil Groups Basd on the Development of Root Rot of Ginseng Seedlings (인삼 유묘 뿌리썩음병 진전에 따른 토양군별 특성)

  • 박규진;정후섭
    • Korean Journal Plant Pathology
    • /
    • v.13 no.1
    • /
    • pp.46-56
    • /
    • 1997
  • Based on the principal component analysis (PCA) of Richards' parameter estimates, ginseng field soils were grouped as the principal component 1 (PC1) and the principal component 2 (PC2). The microflora and physico-chemical characteristics of each soil group were compared to elucidate soil environmental factors affecting the disease development of root rot of ginseng seedling. Among 3 soil groups by PC1, there were differences in the populations of total fungi (TF) and Cylindrocarpon plus Fusarium (C+F), and the population ratio of Cylindrocarpon plus Fusarium to total fungi or total bacteria (C+F/TF, C+F/TB) in rhizoplane of ginseng seedlings, the population of total actinomycetes (TA) and the population ratio of total Fusarium to total actinomycetes (Fus/TA) in soil, and soil chemical properties (EC, NO3-N, K, Mn, ect.). Among 4 soil groups by PC2, there were differences in TF, C+F, TB, C+F/TF and C+F/TB in the rhizoplane, Trichoderma plus Gliocladium (T+G) in soil, and P2O5 content in soil. Especially, EC, NO3-N, K, K/Mg and Mn were positively correlated to PC1, and TA was negatively to PC1; however, TF, C+F, TB, C+F/TF and C+F/TB in the rhizoplane were significantly correlated to PC2 positively. On the other hand, microbes in the rhizoplane were not significantly correlated to the stand-missing rate (SMR), although TA and Fe/Mn were negatively correlated, and pH and Ca were positively correlated to SMR.

  • PDF

Antagonistic Evaluation of Chromobacterium sp. JH7 for Biological Control of Ginseng Root Rot Caused by Cylindrocarpon destructans

  • Han, Joon-Hee;Park, Gi-Chang;Kim, Kyoung Su
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.370-378
    • /
    • 2017
  • Cylindrocarpon destructans is an ascomycete soil-borne pathogen that causes ginseng root rot. To identify effective biocontrol agents, we isolated several bacteria from ginseng cultivation soil and evaluated their antifungal activity. Among the isolated bacteria, one isolate (named JH7) was selected for its high antibiotic activity and was further examined for antagonism against fungal pathogens. Strain JH7 was identified as a Chromobacterium sp. using phylogenetic analysis based on 16S rRNA gene sequences. This strain was shown to produce antimicrobial molecules, including chitinases and proteases, but not cellulases. Additionally, the ability of JH7 to produce siderophore and solubilize insoluble phosphate supports its antagonistic and beneficial traits for plant growth. The JH7 strain suppressed the conidiation, conidial germination, and chlamydospore formation of C. destructans. Furthermore, the JH7 strain inhibited other plant pathogenic fungi. Thus, it provides a basis for developing a biocontrol agent for ginseng cultivation.

Fitness Analysis of the Forecasting Model for the Root Rot Progress of Ginseng Based on Bioassay and Soil Environmental Factors (생물검정 및 토양환경요인에 의한 인삼 뿌리썩음병의 발병예측 모형의 적합성 검정)

  • 박규진
    • Research in Plant Disease
    • /
    • v.7 no.1
    • /
    • pp.20-24
    • /
    • 2001
  • As stand-missing rate (SMR) of ginseng plants in fields are directly related to the ginseng root rot, the forecasting model for the root rot progress in ginseng fields was developed, using the estimated SMRs by disease incidence (DI) of ginseng seedling in the soil-indexing bioassay and the estimate of DI derived from soil environmental factors or rhizoplane microflora. For fitness analysis of the forecasting model, simple correlation and linear regression between SMRs at different planting ages in fields and their estimates by 3 factors of the model were evaluated.The SMR estimated from the factor of DI in the bioassay had much higher fitness to the SMR observed in fields than that from the factors of soil environments and rhizoplane microflora. The estimated SMRs in young and aged ginseng fields by DI in the bioassay were significantly correlated with the observed SMRs in 3- and 5-year-old ginseng fields, respectively (p=0.01). this implicates that indexing preplanting field soils with the forecasting model using DI in the bioassay can provide an information to determine the suitability of the fields for ginseng cultivation, and that indexing cultivating field soils can be helpful to determine the time of harvesting to reduce further yield loss by root rot in continuous cultivation in the next year.

  • PDF

Chlamydospore Induction from Conidia of Cylindrocarpon destructans Isolated from Ginseng in Korea

  • Kang, Yunhee;Kim, Mi Ran;Kim, Ki Hong;Lee, Jungkwan;Lee, Seung-Ho
    • Mycobiology
    • /
    • v.44 no.1
    • /
    • pp.63-65
    • /
    • 2016
  • Cylindrocarpon destructans causes root rot disease in ginseng and can survive for a long time, producing chlamydospores. We optimized conditions to induce chlamydospore production from the conidia of C. destructans, isolated from Korean ginseng. This will provide the basis for testing the efficacy of control agents targeting these chlamydospores.

Transcriptome analyses of the ginseng root rot pathogens Cylindrocarpon destructans and Fusarium solani to identify radicicol resistance mechanisms

  • Li, Taiying;Kim, Jin-Hyun;Jung, Boknam;Ji, Sungyeon;Seo, Mun Won;Han, You Kyoung;Lee, Sung Woo;Bae, Yeoung Seuk;Choi, Hong-Gyu;Lee, Seung-Ho;Lee, Jungkwan
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.161-167
    • /
    • 2020
  • Background: The ascomycete fungi Cylindrocarpon destructans (Cd) and Fusarium solani (Fs) cause ginseng root rot and significantly reduce the quality and yield of ginseng. Cd produces the secondary metabolite radicicol, which targets the molecular chaperone Hsp90. Fs is resistant to radicicol, whereas other fungal genera associated with ginseng disease are sensitive to it. Radicicol resistance mechanisms have not yet been elucidated. Methods: Transcriptome analyses of Fs and Cd mycelia treated with or without radicicol were conducted using RNA-seq. All of the differentially expressed genes (DEGs) were functionally annotated using the Fusarium graminearum transcript database. In addition, deletions of two transporter genes identified by RNA-seq were created to confirm their contributions to radicicol resistance. Results: Treatment with radicicol resulted in upregulation of chitin synthase and cell wall integrity genes in Fs and upregulation of nicotinamide adenine dinucleotide dehydrogenase and sugar transporter genes in Cd. Genes encoding an ATP-binding cassette transporter, an aflatoxin efflux pump, ammonium permease 1 (mep1), and nitrilase were differentially expressed in both Fs and Cd. Among these four genes, only the ABC transporter was upregulated in both Fs and Cd. The aflatoxin efflux pump and mep1 were upregulated in Cd, but downregulated in Fs, whereas nitrilase was downregulated in both Fs and Cd. Conclusion: The transcriptome analyses suggested radicicol resistance pathways, and deletions of the transporter genes indicated that they contribute to radicicol resistance.