• Title/Summary/Keyword: geotechnical parameters

Search Result 750, Processing Time 0.03 seconds

Reliability analysis of slopes stabilised with piles using response surface method

  • Saseendran, Ramanandan;Dodagoudar, G.R.
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.513-525
    • /
    • 2020
  • Slopes stabilised with piles are seldom analysed considering uncertainties in the parameters of the pile-slope system. Reliability analysis of the pile-slope system quantifies the degree of uncertainties and evaluates the safety of the system. In the present study, the reliability analysis of a slope stabilised with piles is performed using the first-order reliability method (FORM) based on Hasofer-Lind approach. The implicit performance function associated with the factor of safety (FS) of the slope is approximated using the response surface method. The analyses are carried out considering the design matrices formulated based on both the 2k factorial design augmented with a centre run (2k fact-centred design) and face-centered cube design (FCD). The finite element method is used as the deterministic model to compute the FS of the pile-slope system. Results are compared with the results of the Monte Carlo simulation. It is observed that the optimum location of the row of piles is at the middle of the slope to achieve the maximum FS. The results show that the reliability of the system is not uniform for different pile configurations, even if the system deterministically satisfies the target factor of safety (FSt) criterion. The FSt should be selected judiciously as it is observed that the reliability of the system changes drastically with the FSt level. The results of the 2k fact-centred design and FCD are in good agreement with each other. The procedure of the FCD is computationally costly and hence the use of 2k fact-centred design is recommended, provided the response of the system is sufficiently linear over the factorial space.

A Prediction of Shear Behavior of the Weathered Mudstone Soil Using Dynamic Neural Network (동적신경망을 이용한 이암풍화토의 전단거동예측)

  • 김영수;정성관;김기영;김병탁;이상웅;정대웅
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.123-132
    • /
    • 2002
  • The purpose of this study is to predict the shear behavior of the weathered mudstone soil using dynamic neural network which mimics the biological system of human brain. SNN and RNN, which are kinds of the dynamic neural network realizing continuously a pattern recognition as time goes by, are used to predict a nonlinear behavior of soil. After analysis, parameters which have an effect on learning and predicting of neural network, the teaming rate, momentum constant and the optimum neural network model are decided to be 0.5, 0.7, 8$\times$18$\times$2 in SU model and 0.3, 0.9, 8$\times$24$\times$2 in R model. The results of appling both networks showed that both networks predicted the shear behavior of soil in normally consolidated state well, but RNN model which is effective fir input data of irregular patterns predicted more efficiently than SNN model in case of the prediction in overconsolidated state.

STIFFNESS AND POROSITY EVALUATION USING FIELD VELOCITY RESISTIVITY PROBE

  • Lee, Jong-Sub;Yoon, Hyung-Koo;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.24-30
    • /
    • 2010
  • The void ratio and elastic moduli are design parameters used in geotechnical engineering to understand soil behavior. Elastic and electromagnetic waves have been used to evaluate the various soil characteristics due to high resolution. The objective of this study is to evaluate the void ratio and elastic moduli based on elastic wave velocities and electrical resistivity. The Field Velocity Resistivity Probe (FVRP) is developed to obtain the elastic and electromagnetic wave profiles of soil during penetration. The Piezoelectric Disk Elements (PDE) and Bender Elements (BE) are used as transducers for measuring the elastic wave velocities such as compressional and shear wave velocities. The Electrical Resistivity Probe (ERP) is also installed for capturing the electrical resistivity profile. The application test is carried out on the southern coast of the Korean peninsula. The field tests are performed at a depth of 6~20 m, at 10 cm intervals for measuring elastic wave velocities and at 0.5cm intervals for measuring electrical resistivity. The elastic moduli such as constraint and shear moduli are calculated by using measured elastic wave velocities. The void ratios are also evaluated based on the elastic wave velocities and the electrical resistivity. Furthermore, the converted void ratios by using FVRP are compared with the volumetric void ratio obtained by a standard consolidation test. The comparison shows that the void ratios based on the FVPR match the volume based void ratio well. This study suggests that the FVRP may be a useful device to effectively determine the elastic moduli and void ratio in the field.

  • PDF

Numerical Analysis on the Effect of Increasing Stiffness of Geosynthetics on Soil Displacement and Pile Efficiency in Piled Embankment on Soft Soil (성토지지말뚝구조에서 토목섬유 인장강성 증가에 따른 변위 억제 및 말뚝효율 증가량에 대한 수치해석적 분석)

  • Lee, Taehee;Lee, Su-Hyung;Lee, Il-Wha;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.31-43
    • /
    • 2015
  • A numerical analysis on the effect of increasing tensile stiffness of the geosynthetics on the soil displacement and pile efficiency was conducted. Parametric studies by changing the stiffness of soft soil, internal friction and dilatancy angles of the embankment material, and flexual stiffness of the composite layer including the geosynthetics were carried out. In general, increasing stiffness of the geosynthetics improves the pile efficiency, whereas the amount of its improvement depends on the condition of parameters. In case of the sufficiently low stiffness of the soft soil or high flexual stiffness of the composite layer including the geosynthetics, a noticeable increase in the pile efficiency can be observed. When the stiffness of the soft soil is very low, the increase in the stiffness of the geosynthetics can significantly reduce the vertical displacement in the piled embankment. When the flexual stiffness of the composite layer is sufficiently high, increasing stiffness of the geosynthetics can greatly improve the pile efficiency.

Analysis of Load Capacity and Deformation Behavior of Suction Pile Installed in Sand (모래지반에 근입된 석션파일의 인발저항력 및 변위거동 분석)

  • Kim, You-Seok;Jang, Yeon-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.27-37
    • /
    • 2011
  • A series of centrifuge model tests to investigate the suction pile pullout loading capacity in sand have been performed. The main parameters that affect the pullout loading capacity of a suction pile include the mooring line inclination angle and the padeye position of the suction pile. With respect to the padeye position, the maximum pullout loading capacity is obtained when the padeye position is near 75% of the pile length from the top. The direction of the pile rotation changes when the padeye position reaches somewhere near 50~75% for all mooring line inclination angles. The translation displacement of suction pile to develop the time of maximum pullout loading capacity decreased as the mooring line inclination angle increased. In addition, the vertical displacements of the center of a suction piles for all cases appeared to develop toward the ground surface.

Application of Resistivity Seismic Flat Dilatometer (RSDMT) System for Multiple Evaluation of the Soft Soil Site (연약지반의 복합적 평가를 위한 전기비저항 탄성파 Flat DMT 장비 적용)

  • Bang, Eun-Seok;Kim, Young-Sang;Park, Sam-Gyu;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.111-122
    • /
    • 2012
  • Resistivity seismic dilatometer (RSDMT) system is introduced. The resistivity module for obtaining resistivity-depth plot and seismic module for obtaining wave velocity-depth plot are attached to the conventional flat dilatometer testing equipment. To enhance the reliability and repeatability of seismic part in RSDMT, automatic testing system including automatic surface source, PC based data acquisition system and operating program was constructed. To obtain real resistivity value of soil, geometric factor for the array of electrodes in RSDMT was derived empirically. The verification studies for the developed RSDMT system were performed with SPT, CPTu, bender element test and DC resistivity survey. Through one penetration of RSDMT, various soil parameters were obtained and the reliability and repeatability of developed RSDMT system could be checked.

Probabilistic Stability Analysis of Unsaturated Soil Slope under Rainfall Infiltration (강우침투에 대한 불포화 토사사면의 확률론적 안정해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.5
    • /
    • pp.37-51
    • /
    • 2018
  • The slope failure due to the rainfall infiltration occurs frequently in Korea, since the depth of the weathered residual soil layer is shallow in mountainous region. Depth of the failure surface is shallow and tends to pass near the interface between impermeable bedrock and soil layer. Soil parameters that have a significant impact on the instability of unsaturated slopes due to rainfall infiltration inevitably include large uncertainties. Therefore, this study proposes a probabilistic analysis procedure by Monte Carlo Simulation which considers the hydraulic characteristics and strength characteristics of soil as random variables in order to predict slope failure due to rainfall infiltration. The Green-Ampt infiltration model was modified to reflect the boundary conditions on the slope surface according to the rainfall intensity and the boundary condition of the shallow impermeable bedrock was introduced to predict the stability of unsaturated soil slope with shallow bedrock under constant rainfall intensity. The results of infiltration analysis were used as inputs of infinite slope analysis to calculate the safety factor. The proposed analysis method can be used to calculate the time-dependent failure probability of soil slope due to rainfall infiltration.

Two dimensional finite element modeling of Tabriz metro underground station L2-S17 in the marly layers

  • Mansouri, Hadiseh;Asghari-Kaljahi, Ebrahim
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.315-327
    • /
    • 2019
  • Deep excavations for development of subway systems in metropolitan regions surrounded by adjacent buildings is an important geotechnical problem, especialy in Tabriz city, where is mostly composed of young alluvial soils and weak marly layers. This study analyzes the wall displacement and ground surface settlement due to deep excavation in the Tabriz marls using two dimensional finite element method. The excavation of the station L2-S17 was selected as a case study for the modelling. The excavation is supported by the concrete diaphragm wall and one row of steel struts. The analyses investigate the effects of wall stiffness and excavation width on the excavation-induced deformations. The geotechnical parameters were selected based on the results of field and laboratory tests. The results indicate that the wall deflection and ground surface settlement increase with increasing excavation depth and width. The change in maximum wall deflection and ground settlement with considerable increase in wall stiffness is marginal, however the lower wall stiffness produces the larger wall and ground displacements. The maximum wall deflections induced by the excavation with a width of 8.2 m are 102.3, 69.4 and 44.3 mm, respectively for flexible, medium and stiff walls. The ratio of maximum ground settlement to maximum lateral wall deflection approaches to 1 with increasing wall stiffness. It was found that the wall stiffness affects the settlement influence zone. An increase in the wall stiffness results in a decrease in the settlements, an extension in the settlement influence zones and occurrence of the maximum settlements at a larger distance from the wall. The maximum of settlement for the excavation with a width of 14.7 m occurred at 6.1, 9.1 and 24.2 m away from the wall, respectively, for flexible, medium and stiff walls.

Numerical Study on Fine Migration in Geo-materials (지반내 세립토 유동에 대한 수치해석적 연구)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.33-41
    • /
    • 2018
  • Soil internal erosion is a phenomenon in which fines attached to the solid skeleton are detached by fluid flow, and this continuous fine migration weakens the hydro-mechanical characteristics of the ground structure. This paper proposed governing equations for fine migration in pore spaces and its related scheme for the numerical analysis. Phase diagram for fine particles includes three different states: detached fines in the liquid phase ($c_e$), attached fines in the solid phase (${\sigma}_a$), and pore-clogged fines in the solid phase (${\sigma}_s$). Numerical formulations for finite element method are developed based on the hydraulic governing equations of pore fluid and fine migration. This study proposed a method of estimating model parameters for fine detachment, attachment, and clogging from 1D erosion experiments. And it proposed an analytical formula for hydraulic permeability function considering fine clogging. Numerical analysis of the previous erosion test developed the numerical scheme and verified the adequacy of fine migration models.

A new analytical approach to estimate the seismic tensile force of geosynthetic reinforcement respect to the uniform surcharge of slopes

  • Motlagh, Ali Tafreshi;Ghanbari, Ali;Maedeh, Pouyan Abbasi;Wu, Wei
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.687-699
    • /
    • 2018
  • This paper investigates the pseudo-static analysis of reinforced slopes with geosynthetics under the influence of the uniform surcharge to evaluate the maximum tensile force of reinforcements. The analytical approach has basically been used to develop the new practical procedure to estimate both tensile force and its distribution in the height of the slope. The base of developed relationships has been adapted from the conventional horizontal slice method. The limit equilibrium framework and the assumptions of log-spiral failure surface have directly been used for proposed analytical approach. A new analytical approach considering a single layer of non-cohesion soil and the influence of uniform surcharge has been extracted from the 5n equation and 5n unknown parameters. Results of the proposed method illustrated that the location of the surcharge, amount of internal friction and the seismic coefficient have the remarkable effect on the tensile force of reinforcement and might be 2 times increasing on it. Furthermore, outcomes show that the amount of tensile force has directly until 2 times related to the amount of slope angle and its height range. Likewise, it is observed that the highest value of the tensile force in case of slope degree more than 60-degree is observed on the lower layers. While in case of less degree the highest amount of tensile force has been reported on the middle layers and extremely depended to the seismic coefficient. Hence, it has been shown that the tensile force has increased more than 6 times compared with the static condition. The obtained results of the developed procedure were compared with the outcomes of the previous research. A good agreement has been illustrated between the amount results of developed relationships and outcomes of previous research. Maximum 20 and 25 percent difference have been reported in cases of static and seismic condition respectively.