DOI QR코드

DOI QR Code

Analysis of Load Capacity and Deformation Behavior of Suction Pile Installed in Sand

모래지반에 근입된 석션파일의 인발저항력 및 변위거동 분석

  • Kim, You-Seok (Institute of Construction Technology, DAEWOO Engineering & Construction Co. Ltd.) ;
  • Jang, Yeon-Soo (Dept. of Civil and Environmental System Engineering, Dongguk University)
  • 김유석 (대우건설기술구원) ;
  • 장연수 (동국대학교 공과대학 건설환경공학과)
  • Received : 2011.03.30
  • Accepted : 2011.11.07
  • Published : 2011.11.30

Abstract

A series of centrifuge model tests to investigate the suction pile pullout loading capacity in sand have been performed. The main parameters that affect the pullout loading capacity of a suction pile include the mooring line inclination angle and the padeye position of the suction pile. With respect to the padeye position, the maximum pullout loading capacity is obtained when the padeye position is near 75% of the pile length from the top. The direction of the pile rotation changes when the padeye position reaches somewhere near 50~75% for all mooring line inclination angles. The translation displacement of suction pile to develop the time of maximum pullout loading capacity decreased as the mooring line inclination angle increased. In addition, the vertical displacements of the center of a suction piles for all cases appeared to develop toward the ground surface.

모래지반에서 석션파일의 최대인발저항력 산정을 위한 일련의 원심모형실험이 수행되었다. 최대인발저항력 산정을 위한 실험인자인 석션파일의 인발각과 인발작용점의 위치에 대하여 실험을 수행하였다. 인발작용점의 경우 75%에서 최대인발저항력이 관찰되었다. 모든 경사각에 대하여 전체파일 높이에서 50%에서 75%사이에 석션파일의 회전각이 변함을 알 수 있었다. 인발각이 증가함에 따라 최대 인발저항력 발생 시까지의 변위가 점점 작아짐을 알 수 있었다. 석션파일의 형상중심의 수직변위를 최대인발저항력이 작용한 시점에서 관찰한 결과 모두 지표 쪽으로 이동한 것을 알 수 있었다.

Keywords

References

  1. 김택곤(1999),"원심모형실험 및 수치해석에 의한 사질토 지반내 터널복공의 역학적 거동에 관한 연구", 박사학위논문, 서울대학교, pp.48-52
  2. Allersma H. O. B., Kirstein A. A., Brinkgreve R. B. J. and Simon T. (1999), "Centrifuge and Numerical Modelling of Horizontally Loaded Suction Piles", 9th Int Offihore and Polar Eng Conf & Exhibition, Brest, France, Vol.1, pp. 711-717.
  3. Allersma H. O. B., Brinkgreve R. B. J. and Simon T. (2000), "Centrifuge and Numerical Modeling of Horizontally Loaded Suction Piles", International Journal of Offihore and Polar Engineering, Vol.10, No.3, pp.222-228.
  4. Aubeny, C. P., Han, S. W., and Murff, J. D. (2003), "Inclined load capacity of suction caissons", Int. J. for Numerical and Analytical Methods in Geomechnics, Vol.27, pp.1235-1254. https://doi.org/10.1002/nag.319
  5. Bang, S., and Cho, Y. (1999), "Analytical Performance Study of Suction Piles in Sand", 9th Int Offihore and Polar Eng Conf & Exhibition, Brest, France, Vol.1, pp.90-93.
  6. Bang, S., and Cho, Y. (2002), "Ultimate Horizontal Loading Capacity of Suction Piles", Int Journal of Offihore and Polar Eng, Vol.12, pp.56-63.
  7. Bang, S., Jones, K. D., Kim K. O., Kim, Y. S., and Cho, Y., (2011), "Inclined Loading Capacity of Suction Piles in Sand," Journal of Ocean Engineering, Vol.38, Issue.7, pp.915-924. https://doi.org/10.1016/j.oceaneng.2010.10.019
  8. Cho. Y., and Bang. S. (2002), "Inclined Loading Capacity of Suction Piles", 12th Int. Offihore and Polar Eng Conf & Exhibition, Kitakyushu, Japan, pp.827-832.
  9. Cho I. H., Kwag D. J., Bang, S., and Cho, Y. (2008), "Use of Suction Piles for Temporary Mooring of Immersed Tunnel Elements", 18th Int. Offihore and Polar Eng Conf & Exhibition, Vancouver, BC, Canada, pp.665-669.
  10. Cho. Y. (2001), "Calibration of Installation, Analytical Performance Study, and Analytical Solution of Loading Capacity of Suction Piles", PhD, South Dakota School of Mines and Technology, pp.173-267.
  11. Cho, Y.,. Bang, S. and Preber, T. (2002), "Transition of Soil Friction During Suction Pile Installation", Canadian Geotechnical Journal, Vol.39, No.5, pp.1118-1125. https://doi.org/10.1139/t02-054
  12. Katagiri, M., Deno K., and Takemura, J. (1998), "Report of cooperative test on method for preparation of sand samples", Centrifuge 98, Vol.2, Tokyo, Japan, pp.1095-1108.
  13. Kim. Y., Kim. K., Cho. Y. and Bang. S. (2010), "Centrifuge Model Tests on Suction Pile Pullout Loading Capacity in Sand", Int. Conf. on Pysical Modelling in Geomechanics, pp.787-792.
  14. Park J. B., Park C. L., Kim S. W., Jeong H. 1., Kim Y. S., Kim S. J. and Kim Y. G. (1998), "Geotechnical Centrifuge Facility at Daewoo Institute of Construction Technology", Centrifoge 98, Tokyo, Japan, pp.9-12.
  15. Randolph, M. F., and Houlsby, G. T. (1984), "The limiting pressure on a circular pile loaded laterally in cohesive soil", Geotechnique, Vol.34, No.4, pp.613-623. https://doi.org/10.1680/geot.1984.34.4.613
  16. Randolph, M. F., Cassidy, M. 1., Gourvenec, S. and Erbrich, C. J. (2005), "Challenges of Offshore Geotechnical Engineering", State of the Art Paper, 16th ICSMGE, Osaka, Japan, 1:123-176. Rotterdam: Balkema.
  17. Supachawarote c., Randolph, M. F .. , and Gourvenec S. (2004), "Inclined Pull-out Capacity of Suction Caissons", 14th Int. Offshore and Polar Eng Conf & Exhibition, Toulin, France, pp.500-506.

Cited by

  1. A Study on Rock Mass Classifications and Tunnel Support Systems in Unconsolidated Sedimentary Rock vol.9, pp.4, 2017, https://doi.org/10.3390/su9040573
  2. 석션파일의 조합하중 지지력 및 압밀거동에 관한 수치해석 연구 vol.30, pp.1, 2014, https://doi.org/10.7843/kgs.2014.30.1.103
  3. 3차원 수치해석을 이용한 점토지반에 설치된 석션파일 인발 시 발현되는 전단응력에 관한 연구 vol.15, pp.2, 2011, https://doi.org/10.14481/jkges.2014.15.2.59
  4. 모래지반에 설치된 병렬식 그룹석션앵커의 인발하중에 대한 수치해석 연구 vol.30, pp.11, 2014, https://doi.org/10.7843/kgs.2014.30.11.61