Browse > Article
http://dx.doi.org/10.12989/gae.2020.21.6.513

Reliability analysis of slopes stabilised with piles using response surface method  

Saseendran, Ramanandan (Geotechnical Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras)
Dodagoudar, G.R. (Geotechnical Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras)
Publication Information
Geomechanics and Engineering / v.21, no.6, 2020 , pp. 513-525 More about this Journal
Abstract
Slopes stabilised with piles are seldom analysed considering uncertainties in the parameters of the pile-slope system. Reliability analysis of the pile-slope system quantifies the degree of uncertainties and evaluates the safety of the system. In the present study, the reliability analysis of a slope stabilised with piles is performed using the first-order reliability method (FORM) based on Hasofer-Lind approach. The implicit performance function associated with the factor of safety (FS) of the slope is approximated using the response surface method. The analyses are carried out considering the design matrices formulated based on both the 2k factorial design augmented with a centre run (2k fact-centred design) and face-centered cube design (FCD). The finite element method is used as the deterministic model to compute the FS of the pile-slope system. Results are compared with the results of the Monte Carlo simulation. It is observed that the optimum location of the row of piles is at the middle of the slope to achieve the maximum FS. The results show that the reliability of the system is not uniform for different pile configurations, even if the system deterministically satisfies the target factor of safety (FSt) criterion. The FSt should be selected judiciously as it is observed that the reliability of the system changes drastically with the FSt level. The results of the 2k fact-centred design and FCD are in good agreement with each other. The procedure of the FCD is computationally costly and hence the use of 2k fact-centred design is recommended, provided the response of the system is sufficiently linear over the factorial space.
Keywords
slope stability; piles; uncertainty; reliability; Hasofer-Lind; finite element method; Monte Carlo simulation; response surface method; FCD; $2^k$ factorial design;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Zhou, C., Shao, W. and van Westen, C.J. (2014), "Comparing two methods to estimate lateral force acting on stabilizing piles for a landslide in the Three Gorges reservoir, China", Eng. Geol., 173, 41-53. https://doi.org/10.1016/j.enggeo.2014.02.004.   DOI
2 Zhu, J.Q. and Yang, X.L. (2018), "Probabilistic stability analysis of rock slopes with cracks", Geomech. Eng., 16(6), 655-667. https://doi.org/10.12989/gae.2018.16.6.655.   DOI
3 Zienkiewicz, O.C., Humpheson, C. and Lewis, R.W. (1975), "Associated and non-associated visco-plasticity and plasticity in soil mechanics", Geotechnique, 25(4), 671-689. https://doi.org/10.1680/geot.1975.25.4.671.   DOI
4 Griffiths, D.V. and Lane, P.A. (1999), "Slope stability analysis by finite elements", Geotechnique, 49(3), 387-403. https://doi.org/10.1680/geot.1999.49.3.387.   DOI
5 Chen, L.T. and Poulos, H.G. (1997), "Piles subjected to lateral soil movements", J. Geotech. Geoenviron. Eng., 123(9), 802-811. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:9(802).   DOI
6 Ellis, E.A., Durrani, I.K. and Reddish, D.J. (2010), "Numerical modelling of discrete pile rows for slope stability and generic guidance for design", Geotechnique, 60(3), 185-195. https://doi.org/10.1680/geot.7.00090.   DOI
7 Eschenbach, T.G. (1992), "Spiderplots versus tornado diagrams for sensitivity analysis", Interfaces, 22(6), 40-46. https://doi.org/10.1287/inte.22.6.40.   DOI
8 GuhaRay, A. and Baidya, D.K. (2014), "Partial safety factors for retaining walls and slopes: A reliability based approach", Geomech. Eng., 6(2), 99-115. https://doi.org/10.12989/gae.2014.6.2.099.   DOI
9 Guo, W.D. and Ghee, E.H. (2004), "Response of free-head piles due to lateral soil movement", Proceedings of the 9th Australia New Zealand Conference on Geomechanics, Auckland, New Zealand, February.
10 Hamby, D.M. (1994), "A review of techniques for parameter sensitivity analysis of environmental models", Environ. Monit. Assess., 32(2), 135-154. https://doi.org/10.1007/BF00547132.   DOI
11 Ni, P., Mangalathu, S. and Yi, Y. (2018a), "Fragility analysis of continuous pipelines subjected to transverse permanent ground deformation", Soils Found., 58(6), 1400-1413. https://doi.org/10.1016/j.sandf.2018.08.002.   DOI
12 Hamrouni, A., Dias, D. and Sbartai, B. (2018), "Reliability analysis of a mechanically stabilized earth wall using the surface response methodology optimized by a genetic algorithm", Geomech. Eng., 15(4), 937-945. https://doi.org/10.12989/gae.2018.15.4.937.   DOI
13 Hasofer, A.M. and Lind, N.C. (1974), "Exact and invariant second-moment code format", J. Eng. Mech. Div., 100(1), 111-121.   DOI
14 Hassiotis, S., Chameau, J.L. and Gunaratne, M. (1997), "Design method for stabilization of slopes with piles", J. Geotech. Geoenviron. Eng., 123(4), 314-323. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(314).   DOI
15 Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M. (2009), Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley and Sons, Inc., Hoboken, New Jersey, U.S.A.
16 Ni, P., Mangalathu, S. and Liu, K. (2020), "Enhanced fragility analysis of buried pipelines through lasso regression", Acta Geotechnica, 15(2), 471-487. https://doi.org/10.1007/s11440-018-0719-5.   DOI
17 Ni, P., Mangalathu, S., Mei, G. and Zhao, Y. (2017), "Permeable piles: An alternative to improve the performance of driven piles", Comput. Geotech., 84, 78-87. https://doi.org/10.1016/j.compgeo.2016.11.021.   DOI
18 Ni, P., Wang, S., Zhang, S. and Mei, L. (2016), "Response of heterogeneous slopes to increased surcharge load", Comput. Geotech., 78, 99-109. http://doi.org/10.1016/j.compgeo.2016.05.007.   DOI
19 Ni, P., Mei, G. and Zhao, Y. (2018b), "Influence of raised groundwater level on the stability of unsaturated soil slopes", Int. J. Geomech., 18(12), 04018168. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001316.   DOI
20 Ni, P., Song, L., Mei, G. and Zhao, Y. (2018c), "On predicting displacement-dependent earth pressure for laterally loaded piles", Soils Found., 58(1), 85-96. https://doi.org/10.1016/j.sandf.2017.11.007.   DOI
21 McGann, C.R., Arduino, P. and Mackenzie-Helnwein, P. (2012), "Simplified procedure to account for a weaker soil layer in lateral load analysis of single piles", J. Geotech. Geoenviron. Eng., 138(9), 1129-1137. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000684.   DOI
22 Ho, I. (2017), "Three-dimensional finite element analysis for soil slopes stabilisation using piles", Geomech. Geoeng., 12(4), 234-249. https://doi.org/10.1080/17486025.2017.1347286.   DOI
23 Nian, T.K., Chen, G.Q., Luan. M.T., Yang, Q. and Zheng, D.F. (2008), "Limit analysis of the stability of slopes reinforced with piles against landslide in nonhomogenous and anisotropic soils", Can. Geotech. J., 45(8), 1092-1103. https://doi.org/10.1139/T08-042.   DOI
24 Nowak, A.S. and Collins, K.R. (2013), Reliability of Structures, CRC Press, Boca Raton, Florida, U.S.A.
25 He, Y., Hazarika, H., Yasufuku, N., Teng, J., Jiang, Z. and Han, Z. (2015), "Estimation of lateral force acting on piles to stabilize landslides", Nat. Hazards, 79(3), 1981-2003. https://doi.org/10.1007/s11069-015-1942-0.   DOI
26 Ho, I. (2014), "Parametric studies of slope stability analyses using three-dimensional finite element technique: Geometric effect", J. GeoEng., 9(1), 33-43. http://doi.org/10.6310/jog.2014.9(1).4.
27 Ho, I. (2015), "Numerical study of slope-stabilizing piles in undrained clayey slopes with a weak thin layer", Int. J. Geomech., 15(5), 234-249. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000445.
28 Ito, T. and Matsui, T. (1975), "Methods to estimate lateral force acting on stabilizing piles", Soils Found., 15(4), 43-59. https://doi.org/10.3208/sandf1972.15.4_43.   DOI
29 Poulos, H.G. (1995), "Design of reinforcing piles to increase slope stability", Can. Geotech. J., 32(5), 808-818. https://doi.org/10.1139/t95-078.   DOI
30 Phoon, K. and Kulhawy, F.H. (1999), "Characterization of geotechnical variability", Can. Geotech. J., 36(4), 612-624. https://doi.org/10.1139/t99-038.   DOI
31 Ruiz, S.E. (1984), "Reliability index for offshore piles subjected to bending", Struct. Safety, 2(2), 83-90. https://doi.org/10.1016/0167-4730(84)90012-2.   DOI
32 Sayed, S., Dodagoudar, G.R. and Rajagopal, K. (2010), "Finite element reliability analysis of reinforced retaining walls", Geomech. Geoeng., 5(3), 187-197. https://doi.org/10.1080/17486020903576788.   DOI
33 Shin, E.C., Patra, C.R. and Rout, A.K. (2006), "Automated stability analysis of slopes stabilized with piles", KSCE J. Civ. Eng., 10(5), 333-338. https://doi.org/10.1007/BF02830087.   DOI
34 Smethurst, J.A. and Powrie, W. (2007), "Monitoring and analysis of the bending behaviour of discrete piles used to stabilise a railway embankment", Geotechnique, 57(8), 663-677. https://doi.org/10.1680/geot.2007.57.8.663.   DOI
35 Smirnov, N.V. (1939), "Estimate of deviation between empirical distribution functions in two independent samples", Bull. Moscow Univ., 2(2), 3-16.
36 Tu, Y., Liu, X., Zhong, Z. and Li, Y. (2016), "New criteria for defining slope failure using the strength reduction method", Eng. Geol., 212, 63-71. https://doi.org/10.1016/j.enggeo.2016.08.002.   DOI
37 Cai, F. and Ugai, K. (2000), "Numerical analysis of the stability of a slope reinforced with piles", Soils Found., 40(1), 73-84. https://doi.org/10.3208/sandf.40.73.   DOI
38 ABAQUS/CAE (2014), ABAQUS/CAE User's Guide, Dassault Systemes, Providence, Rhode Island, U.S.A.
39 Ausilio, E., Conte, E. and Dente, G. (2001), "Stability analysis of slopes reinforced with piles", Comput. Geotech., 28(8), 591-611. https://doi.org/10.1016/S0266-352X(01)00013-1.   DOI
40 Babu, G.L.S. and Singh, V.P. (2010), "Reliability analysis of a prototype soil nail wall using regression models", Geomech. Eng., 2(2), 71-88. https://doi.org/10.12989/gae.2010.2.2.071.   DOI
41 Carrubba, P., Maugeri, M. and Motta, E. (1989), "Esperienze in vera grandezza sul comportamento di pali per la stabilizzaaione di un pendio", Proceedings of the 17th Convegno Nazionale di Geotechnica, Taromina, Italy, June.
42 Kolmogorov, A.N. (1933), "Sulla determinazione empirica di una legge di distribuzione", Giornale dell'Istituto Italiano degli Attuari, 4, 83-91.
43 Ito, T., Matsui, T. and Hong, W.P. (1981), "Design method for stabilizing piles against landslide - one row of piles", Soils Found., 21(1), 21-37. https://doi.org/10.3208/sandf1972.21.21.   DOI
44 Ji, J. and Low, B.K. (2012), "Stratified response surfaces for system probabilistic evaluation of slopes", J. Geotech. Geoenviron. Eng., 138(11), 1398-1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000711.   DOI
45 Joorabchi, A.E. (2011), "Landslide stabilization using drilled shaft in static and dynamic condition", Ph.D. Dissertation, The University of Akron, Akron, Ohio, U.S.A.
46 Lee, B.J., Kee, S., Oh, T. and Kim, Y. (2017), "Evaluating the dynamic elastic modulus of concrete using shear-wave velocity measurements", Adv. Mater. Sci. Eng. https://doi.org/10.1155/2017/1651753.   DOI
47 Lee, C.Y., Hull, T.S. and Poulos, H.G. (1995), "Simplified pileslope stability analysis", Comput. Geotech., 17(1), 1-16. https://doi.org/10.1016/0266-352X(95)91300-S.   DOI
48 Wei, W.B. and Cheng, Y.M. (2009), "Strength reduction analysis for slope reinforced with one row of piles", Comput. Geotech., 36(7), 1176-1185. https://doi.org/10.1016/j.compgeo.2009.05.004.   DOI
49 Won, J., You, K., Jeong, S. and Kim, S. (2005), "Coupled effects in stability analysis of pile-slope systems", Comput. Geotech., 32(4), 304-315. https://doi.org/10.1016/j.compgeo.2005.02.006.   DOI
50 Chan, C.L. and Low, B.K. (2012), "Practical second-order reliability analysis applied to foundation engineering", Int. J. Numer. Anal. Meth. Geomech., 36(11), 1387-1409. https://doi.org/10.1002/nag.1057.   DOI
51 Li, D., Zheng, D., Cao, Z., Tang, X. and Phoon, K. (2016), "Response surface methods for slope reliability analysis: Review and comparison", Eng. Geol., 203, 3-14. https://doi.org/10.1016/j.enggeo.2015.09.003.   DOI
52 Li, L. and Liang, R.Y. (2014), "Reliability-based design for slopes reinforced with a row of drilled shafts", Int. J. Numer. Anal. Meth. Geomech., 38(2), 202-220. https://doi.org/10.1002/nag.2220.   DOI
53 Li, X., He, S., Luo, Y. and Wu, Y. (2011), "Numerical studies of the position of piles in slope stabilization", Geomech. Geoeng., 6(3), 209-215. https://doi.org/10.1080/17486025.2011.578668.   DOI
54 Yu, Y., Shang, Y. and Sun, H. (2014), "A theoretical method to predict crack initiation in stabilizing piles", KSCE J. Civ. Eng., 18(5), 1332-1341. https://doi.org/10.1007/s12205-014-0063-8.   DOI
55 Xu, J., Li, Y. and Yang, X. (2018), "Stability charts and reinforcement with piles in 3D nonhomogeneous and anisotropic soil slope", Geomech. Eng., 14(1), 71-81. https://doi.org/10.12989/gae.2018.14.1.071.   DOI
56 Yang, X.L. and Li, W.T. (2017), "Reliability analysis of shallow tunnel with surface settlement", Geomech. Eng., 12(2), 313-326. https://doi.org/10.12989/gae.2017.12.2.313.   DOI
57 Yang, X.L. and Liu, Z.A. (2018), "Reliability analysis of threedimensional rock slope", Geomech. Eng., 15(6), 1183-1191. https://doi.org/10.12989/gae.2018.15.6.1183.   DOI
58 Zhang, B., Ma, Z., Wang, X., Zhang, J. and Peng, W. (2020), "Reliability analysis of anti-seismic stability of 3D pressurized tunnel faces by response surfaces method", Geomech. Eng., 20(1), 43-54. https://doi.org/10.12989/gae.2020.20.1.043.   DOI
59 Zhang, J., Huang, H.W., Juang, C.H. and Li, D.Q. (2013), "Extension of Hassan and Wolff method for system reliability analysis of soil slopes", Eng. Geol., 160, 81-88. https://doi.org/10.1016/j.enggeo.2013.03.029.   DOI
60 Zhang, J., Wang, H., Huang, H.W. and Chen, L.H. (2017), "System reliability analysis of soil slopes stabilized with piles", Eng. Geol., 229, 45-52. https://doi.org/10.1016/j.enggeo.2017.09.009.   DOI
61 Mandali, A.M., Sujith, M.S., Rao, B.N. and Maganti, J. (2011), "Reliability analysis of counterfort retaining walls", Electron. J. Struct. Eng., 11(1), 42-56.
62 Li, X., Pei, X., Gutierrez, M. and He, S. (2012), "Optimal location of piles in slope stabilization by limit analysis", Acta Geotechnica, 7(3), 253-259. https://doi.org/10.1007/s11440-012-0170-y.   DOI
63 Li, X., Su, L., He, S. and Xu, J. (2015), "Limit equilibrium analysis of seismic stability of slopes reinforced with a row of piles", Int. J. Numer. Anal. Meth. Geomech., 40(8), 1241-1250. https://doi.org/10.1002/nag.2484.   DOI
64 Loucks, D.P. and Van Beek, E. (2017), Water Resource Systems Planning and Management: An Introduction to Methods, Models and Applications, Springer, Cham, Zug, Switzerland.
65 Mangalathu, S., Jeon, J. and DesRoches, R. (2018), "Critical uncertainty parameters influencing seismic performance of bridges using lasso regression", Earthq. Eng. Struct. Dyn., 47(3), 784-801. https://doi.org/10.1002/eqe.2991.   DOI