• Title/Summary/Keyword: geotechnical parameters

Search Result 750, Processing Time 0.036 seconds

A Study on the Strength Parameters of Cut Slopes on the National Highway (일반국도상 절토사면 강도정수에 관한 연구)

  • Rhee, Jong-Hyun;Kim, Seung-Hyun;Kim, Jin-Hwan;Lee, Jeong-Yeob;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1050-1056
    • /
    • 2008
  • Many cut slopes are situated on national highways. In this study, we chose rock slopes of moderated weathering grade to analyze general strength parameters of cut slopes. We analyzed the strength parameters of selected rock slopes by the experience method. Also, we arranged the strength parameters by area and rock types.

  • PDF

A parameter calibration method for PFC simulation: Development and a case study of limestone

  • Xu, Z.H.;Wang, W.Y.;Lin, P.;Xiong, Y.;Liu, Z.Y.;He, S.J.
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.97-108
    • /
    • 2020
  • The time-consuming and less objectivity are the main problems of conventional micromechanical parameters calibration method of Particle Flow Code simulations. Thus this study aims to address these two limitation of the conventional "trial-and-error" method. A new calibration method for the linear parallel bond model (CM-LPBM) is proposed. First, numerical simulations are conducted based on the results of the uniaxial compression tests on limestone. The macroscopic response of the numerical model agrees well with the results of the uniaxial compression tests. To reduce the number of the independent micromechanical parameters, numerical simulations are then carried out. Based on the results of the orthogonal experiments and the multi-factor variance analysis, main micromechanical parameters affecting the macro parameters of rocks are proposed. The macro-micro parameter functions are ultimately established using multiple linear regression, and the iteration correction formulas of the micromechanical parameters are obtained. To further verify the validity of the proposed method, a case study is carried out. The error between the macro mechanical response and the numerical results is less than 5%. Hence the calibration method, i.e., the CM-LPBM, is reliable for obtaining the micromechanical parameters quickly and accurately, providing reference for the calibration of micromechanical parameters.

Sensitivity Analysis of Shear Strength Parameters($C, _{\Phi}$)and Slope Angel in Slope Stability Analysis (사면 안정해석에 적용되는 지반강도정수($C, _{\Phi}$)와 사면경사 민감도 분석)

  • Baek, Yong;Bae, Gyu-Jin;Kwon, O-Il;Jang, Su-Ho;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.179-184
    • /
    • 2005
  • Shear strength parameters obtained from filed survey are important factors in the analysis of slope stability. In this study, sensitivity analysis was performed to evaluate the effect of input parameters on the analysis of slope stability. The input parameters selected for sensitivity analysis were slope angle, cohesion, and friction angle. Monte-Carlo Simulation method was used for calculating input parameters and the factor of safety was computed by means of limit equilibrium method. A rock slope, which has failed in the field, was used for the sensitivity analysis in the analysis of slope stability. The result of analysis shows that the factor of safety of the rock slope was a little low. From partial correlation coefficient(PPC) of input parameters determined from the sensitivity analysis, slope stability was dependant on cohesion and slope angle. The effect of friction angle was lower than that of cohesion and slope angle on slope stability.

  • PDF

A Copula method for modeling the intensity characteristic of geotechnical strata of roof based on small sample test data

  • Jiazeng Cao;Tao Wang;Mao Sheng;Yingying Huang;Guoqing Zhou
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.601-618
    • /
    • 2024
  • The joint probability distribution of uncertain geomechanical parameters of geotechnical strata is a crucial aspect in constructing the reliability functional function for roof structures. However, due to the limited number of on-site exploration and test data samples, it is challenging to conduct a scientifically reliable analysis of roof geotechnical strata. This study proposes a Copula method based on small sample exploration and test data to construct the intensity characteristics of roof geotechnical strata. Firstly, the theory of multidimensional copula is systematically introduced, especially the construction of four-dimensional Gaussian copula. Secondly, data from measurements of 176 groups of geomechanical parameters of roof geotechnical strata in 31 coal mines in China are collected. The goodness of fit and simulation error of the four-dimensional Gaussian Copula constructed using the Pearson method, Kendall method, and Spearman methods are analyzed. Finally, the fitting effects of positive and negative correlation coefficients under different copula functions are discussed respectively. The results demonstrate that the established multidimensional Gaussian Copula joint distribution model can scientifically represent the uncertainty of geomechanical parameters in roof geotechnical strata. It provides an important theoretical basis for the study of reliability functional functions for roof structures. Different construction methods for multidimensional Gaussian Copula yield varying simulation effects. The Kendall method exhibits the best fit in constructing correlations of geotechnical parameters. For the bivariate Copula fitting ability of uncertain parameters in roof geotechnical strata, when the correlation is strong, Gaussian Copula demonstrates the best fit, and other Copula functions also show remarkable fitting ability in the region of fixed correlation parameters. The research results can offer valuable reference for the stability analysis of roof geotechnical engineering.

Identification of Geotechnical Paramters Using Relative Convergence Measurements (상대변위를 이용한 지반정수 인식)

  • Choi, Sang-Hyun;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.418-423
    • /
    • 2005
  • In designing underground structure such as tunnels, estimating geotechnical characteristics of the ground is one of the most important and difficult tasks. In this paper, a methodology that can identify geotechnical parameters using only field-measured relative convergence displacements is presented. By using only relative convergence measurement data, inevitable errors in absolute convergence estimation can be avoided and in turn the parameter estimation process can be simplified. The methodology utilizes sensitivity relationship between static displacement measurements and geotechnical parameters. The feasibility and applicability of the proposed methodology is verified via a 3-d numerical example of a tunnel structure.

  • PDF

Coupling relevance vector machine and response surface for geomechanical parameters identification

  • Zhao, Hongbo;Ru, Zhongliang;Li, Shaojun
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1207-1217
    • /
    • 2018
  • Geomechanics parameters are critical to numerical simulation, stability analysis, design and construction of geotechnical engineering. Due to the limitations of laboratory and in situ experiments, back analysis is widely used in geomechancis and geotechnical engineering. In this study, a hybrid back analysis method, that coupling numerical simulation, response surface (RS) and relevance vector machine (RVM), was proposed and applied to identify geomechanics parameters from hydraulic fracturing. RVM was adapted to approximate complex functional relationships between geomechanics parameters and borehole pressure through coupling with response surface method and numerical method. Artificial bee colony (ABC) algorithm was used to search the geomechanics parameters as optimal method in back analysis. The proposed method was verified by a numerical example. Based on the geomechanics parameters identified by hybrid back analysis, the computed borehole pressure agreed closely with the monitored borehole pressure. It showed that RVM presented well the relationship between geomechanics parameters and borehole pressure, and the proposed method can characterized the geomechanics parameters reasonably. Further, the parameters of hybrid back analysis were analyzed and discussed. It showed that the hybrid back analysis is feasible, effective, robust and has a good global searching performance. The proposed method provides a significant way to identify geomechanics parameters from hydraulic fracturing.

Application of Geotechnical Properties to the Slope Stability Analysis in Deep Weathered Zone (깊은 풍화대 사면의 안정성 해석에서 물성치 산정 및 적용)

  • Kim, Kyung-Tae;Park, See-Boum;Kim, Chang-Hyun;Lee, Jong-Bum;Yoon, Yea-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.768-776
    • /
    • 2006
  • Recently in spite of Development of Investigation machine, in Application of Geotechnical Properties by empirical recommendation to the Slope Stability Analysis. It is generally Application of convenience and conservative Geotechnical Properties by Borehole Shear Test(BST) in Representative Zone that Non-Division of Increase as the depth of Strength Parameters In Deep Weathered Zone. Therefore, it is become environment pollution and Non-Economical Slope Design to Application of convenience and conservative Geotechnical Properties. The production mechanism of Deep Weathered Zone is tend to Weathering Degree low and Strength increase by increase as the depth. it is realistic design that Division of Deep Weathered Zone and application Geotechnical Properties of Each Layer. In this Paper, Determined The Relationship of Strength Parameters between Standard Penetration Test(SPT), Borehole Shear Test(BST) and empirical recommendation also Applyed each strength parameters of divided zone to the Slope Stability Analysis by continuous Borehole Shear Test(BST) in Deep Weathered Zone during design of The 2nd Bridge Connection Road of Incheon International Airport.

  • PDF

A Study on the Utilization of Drilling Investigation Information (시추조사 정보 활용방안에 관한 연구)

  • Jinhwan Kim;Yong Baek;Jong-Hyun Lee;Gyuphil Lee;Woo-Seok Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.531-541
    • /
    • 2023
  • The most important thing in the 4th industry, AI era, and smart construction era is digital data. Basic data in the civil engineering field begins with ground investigation. The Ministry of Land, Infrastructure and Transport operates the Geotechnical Information Database Center to manage ground survey data, including drilling but the focus is on data distribution. This study seeks to devise a plan for long-term use of the results of drilling investigation conducted for the design and construction of various construction projects. For this purpose, a pilot area was set up and a 'geotechnical design parameters digital map' was created using some geotechnical design parameters from the drilling investigation data. Using the developed algorithm, a digital map of friction angle and permeability coefficient for the hard rock stratum in the pilot area was created. Geotechnical design parameters digital map can identify the overall condition of the ground, but reliability needs to be improved due to the lack of initial data input. Through additional research, it will be possible to produce a more complete geotechnical design parameters digital map.

The Sensitivity Analysis on Failure Parameter of Adjacent Twin Tunnel Using Model Tests (근접 병설터널 모형실험을 통한 붕괴인자 민감도 분석)

  • Han, Yeon-Jin;Shim, Seung-Bo;Choi, Yong-Kyu;Kim, Gun-Ho;Chang, Ock-Sung;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.585-594
    • /
    • 2009
  • In this present study, to performed the model test and estimated the behavior characteristics of twin tunnel in accordance with the variation of the whole failure parameters which is the strength of the ground, distance of tunnel, angle of the joint, installation of tension bolts and the blasting load. To carry out the numerical analysis for verification of model test results and analyze the sensitivity on failure parameters using model test and numerical analysis results. Based on sensitivity analysis results, to propose the most habitually failure parameters in tunnel scale model test.

  • PDF

Geotechnical Characteristics of Major Earth and Rockfill Dams in Korea (우리나라 주요 록휠 댐의 지반공학적 특성)

  • 유태성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.3.2-27
    • /
    • 2002
  • This paper presents the status of dam construction in Korea, along with a brief assessment of the dam design and construction practice. The assessment is based on publically available design and construction records of the major existing rockfill dams which have been constructed since early 1970's, and focussed in identifying geotechnical characteristics of design and construction parameters of the dams. Though the assessment, two representative dams, having unique geotechnical characteristics, are selected for comprehensive comparison of their geotechnical engineering behavior during construction and operation. The comparison yields very interesting findings on the effects of various design and construction parameters on dam behavior.

  • PDF