• Title/Summary/Keyword: geotechical properties

Search Result 345, Processing Time 0.022 seconds

Reliability-based Optimization for Rock Slopes

  • Lee, Myung-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.05a
    • /
    • pp.3-34
    • /
    • 1998
  • The stability condition of rock slopes is greatly affected by the geometry and strength parameters of discontinuities in the rock masses. Rock slopes Involving movement of rock blocks on discontinuities are failed by one or combination of the three basic failure modes-plane, wedge, and toppling. In rock mechanics, practically all the parameters such as the joint set characteristics, the rock strength properties, and the loading conditions are always subject to a degree of uncertainty. Therefore, a reasonable assessment of the rock slope stability has to include the excavation of the multi-failure modes, the consideration of uncertainties of discontinuity characteristics, and the decision on stabilization measures with favorable cost conditions. This study was performed to provide a new numerical model of the deterministic analysis, reliability analysis, and reliability-based optimization for rock slope stability. The sensitivity analysis was carried out to verify proposed method and developed program; the parameters needed for sensitivity analysis are design variables, the variability of discontinuity properties (orientation and strength of discontinuities), the loading conditions, and rock slope geometry properties. The design variables to be optimized by the reliability-based optimization include the cutting angle, the support pressure, and the slope direction. The variability in orientations and friction angle of discontinuities, which can not be considered in the deterministic analysis, has a greatly influenced on the rock slope stability. The stability of rock slopes considering three basic failure modes is more influenced by the selection of slope direction than any other design variables. When either plane or wedge failure is dominant, the support system is more useful than the excavation as a stabilization method. However, the excavation method is more suitable when toppling failure is dominant. The case study shows that the developed reliability-based optimization model can reasonably assess the stability of rock slopes and reduce the construction cost.

  • PDF

Estimation of Dynamic Characteristics of Core Zone of Rockfill Dam by Multi-channel Analysis of Surface Waves (MASW 조사를 통한 사력댐 코어존 동적물성의 평가)

  • Lee, Jong-Wook;Ha, Ik-Soo;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.860-868
    • /
    • 2008
  • Seismic safety analysis of rockfill dams are consist of the stability analysis as an simplifed method and the dynamic analysis as an detailed method. When high risk dams such as Multi-purpose dams were often applied detailed method by dynamic analysis, dynamic properties of dam materials such as shear modulus are considered as most important factor. Dynamic material properties such as shear modulus had to be investigated by cyclic triaxial test et al. during design and construction stage but these were not conducted because of the condition of domestic seismic design technique. MASW and SASW methods had been applied as a non destructive method to investigate dynamic material properties of existing rockfill dam, has no problems in dam safety at present. These methods were usually performed under the assumptions that the subsurface can be described horizontally homogeneous and isotropic layers. Recent studies(Marwin, 1993, Kim, 2001) showed that surface waves generated through inclined structures have different characteristics from those through a horizontally homogeneous layered model. further Kim et al(2005) and Min and Kim(2006) showed that central core type rockfill dam overestimated the shear wave velocities as increasing the depth through the 3D numerical modelling dut to the effect of outer rockfill and geometrical reasons In this study the results of shear wave velocities of seven rockfill dams form comprehensive facility review, was carried out from 2003 to 2007, were collected and analysed to establish the shear wave velocity distribution characteristics in increasing confining stress in rockfill dams and surface wave velocity ranges in rockfill dam through MASW and the limitation in application are discussed to be utilized as an reference value for dynamic analysis.

  • PDF

Safety Evaluation of Rock-Fill Dam by Seismic(MASW) Method (사력댐의 안정성평가를 위한 표면파탐사(MASW)의 활용성)

  • 정해상;오영철;방돈석;안상로
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.359-364
    • /
    • 2003
  • For safety evaluation of a rock-fill dim, it is often necessary to investigate spatial distribution of weak zones such as fracture. Both DC-resistivity survey and seismic(SASW) method are usually used for the purpose. Recently, Multichannel analysis of surface waves(MASW) method which makes up for the weak point of SASW method is developed and the site examination which is simple came to be possible comparatively. In order to obtain 2-D shear-wave velocity(Vs) profile along the dam axis that can be associated with dynamic properties of filled materials, MASW method was adapted. Then, DC-resistivity survey and drilling survey were performed to compare with each results. We confirmed that the MASW method and DC-resistivity survey show complementary result that corresspond with drilling result. Therefore, MASW method is an efficient method for dynamic characterization of dam-filling materials and also the combination of related methods such as DC-resistivity can lead to an effective safety evaluation of rock-fill dam.

  • PDF

Behavior of Geotextile Tube by Numerical Analysis (수치해석기법을 이용한 지오텍스타일 튜브의 거동분석)

  • 신은철;오영인;조인휘
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.385-392
    • /
    • 2003
  • Traditional forms of river and coastal structures have become very expensive to build and maintain, because of the shortage of natural rock. Geotextile tubes hydraulically or mechanically filled with dredged materials have been applied in hydraulic and coastal engineering in recent years(shore protection structure, detached breakwater, groins and jetty). Recently, new preliminary design criteria supported by model and prototype tests, and some stability analysis calculations have been studied. In this study, the numerical analysis was performed to investigate the behavior of geotextile tube with various properties of geotextile and hydraulic pumping conditions. Numerical analysis was executed to compare with the results from the large-scale field model tests, and also compared the results of 2-D plane strain analysis and 3-D FEM analysis. A geotextile tube was modeled using the commercial finite element analysis program ABAQUS and the one-quarter of tube was modeled. Behavior of geotextile tube during the hydraulic pumping procedure was analyzed by comparing the large-scale field model test and numerical analysis. The shape variation and maximum tube height between the numerical analysis results and large-scale filed test results are turned out to be a good agreement.

  • PDF

A Study on the WFS Co-mixtures by Small Scale Retaining Wall Test (모형옹벽실험을 이용한 폐주물사 혼합재의 지반공학 적용성 연구)

  • 조재윤;이관호;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.419-426
    • /
    • 2000
  • The purpose of this study is to present the application of WFS co-mixtures for retaining wall as flowable backfill. The fly ash, generated at the Tae-An thermoelectric power plant, was used in this research and was classified as Class F. Green Sand, Furane Sand, and Coated Sand, which had been used at a foundry located in Pusan, were used. Couple of laboratory tests and small scale retaining wall tests were performed to obtain the physical properties of the WFS co-mixtures and the possibility of backfill materials of retaining wall. The range of permeability for all the co-mixtures was from 3.0${\times}$10$\^$-3/ cm/s to 6.0${\times}$10$\^$-5/ cm/s. The unconfined strength of the 28-day cured specimens reached around 550kPa. Results of the consolidated-undrained triaxial test showed that the internal friction angle is between 33.5$^{\circ}$ and 41.8$^{\circ}$. The lateral earth pressure against wall decreased up to 80% of initial pressure within a 12 hours and the total lateral earth pressure is less than that of typical granular soil. It was enough to construct the backfill for the standard retaining of 6m with just two steps, like fill the co-mixtures for half of retaining wall, and then fill the others after 1 day. The stability of retaining wall for overturning and sliding increased as the curing time elapsed.

  • PDF

Liquefaction Judgement on Saemangeum with GIS (새만금지역에서 GIS를 이용한 광역액상화 판정)

  • Song, Byung-Woong;Kim, Gun-Ho;Yoo, Jin-Ho;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.49-59
    • /
    • 2010
  • Earthquake-induced liquefaction on saturated loose sand is well known in the world. Since Saemangeum Dike Project has a plan to be reclaimed with dredged sand on wide river, possibility of liquefaction should be checked. Section Dongjin5 was selected to evaluate possibility of liquefaction. Estimating method follows as 1) determination of PL value with SPT results, passing curve, and soil properties, 2) prediction for maximum earthquake acceleration, 3) calculation for FL value on depth with Korean specification for highway bridges, 4) visualization for possibility of liquefaction on all of project area with GIS 5) comparison with Japanese specification for highway bridges, Youd and Idriss method, and Andrus and Stokoe II method for verification, 6) ascertainment for the potential liquefaction with cyclic triaxial test. 7) establishing for countermeasure if needed. From the results, even though most of area covered with sand, no potential liquefaction exists except some areas. Those need to soil improvement with grout or attaching measurement on substructure.

  • PDF

Development of Construction Simulation Apparatus on Centrifugal Experiment (원심모형실험을 위한 시공단계모사장비개발)

  • Kim, You-Seok;Kim, Kyoung-O;Lee, Jong-Pil;Park, Jin-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.979-990
    • /
    • 2010
  • Although a centrifuge model test is performed with scaled models, it has a lot of advantages compared with usual scale model tests, for the reproduction of stress levels equal to a full scale test is possible. At the beginning of the Daewoo Institute of Construction Technology, a servo-motor-driven single axis actuator was introduced and has been in use with a geo-centrifuge. However, for variety of experiments and construction stage simulation, various apparatuses have been developed, such as a vacuum generator, a lateral actuator for tidal power simulation, a gravel hopper and a sand drainer for filled-up ground, and a water level controller. The apparatuses have been manufactured with enough strength and durability to be operated under specific g levels. This paper presents the properties of the apparatuses and the results of the tests performed with those.

  • PDF

Investigation into Weathering Degree and Shear Wave Velocity for Decomposed Granite in Hongsung (홍성 지역 화강 풍화 지층에 대한 풍화도 및 전단파 속도 고찰)

  • Sun, Chang-Guk;Kim, Bo-Hyun;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.360-372
    • /
    • 2005
  • The weathering degree and shear wave velocity, $V_S$, were evaluated for decomposed granite layers in Hongsung, where earthquake damages have occurred. The subsurface geological layers and their $V_S$ profiles were determined, respectively, from boring investigations and seismic tests such as crosshole, downhole and SASW tests. The subsurface layers were composed of 10 to 40 m thickness of weathered residual soil and weathered rock in most sites. In the laboratory, the weathering indexes with depth were estimated based on the results of X-ray fluorescence analysis using samples obtained from field, together with the dynamic soil properties determined from resonant column tests using reconstituted specimens. According to the results, it was examined that most weathering degrees represented such as VR, Li, CIA, MWPI and WIP were decreased with increasing depth with exception of RR and CWI. For weathered residual soils in Hongsung, the $V_S's$ determined from borehole seismic tests were slightly increased with increasing depth, and were similar to those from resonant column tests. Furthermore, the $V_S$ values were independent on the weathering degrees, which were decreased with depth.

  • PDF

Design Example of Gravel Mat for Horizontal Drains (쇄석Mat를 이용한 수평배수공법 설계사례)

  • Jeong, Kyeong-Han;Lee, Young-Keun;Lee, See-Woo;Kim, Jae-Sung;Kim, Byung-Tak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.174-187
    • /
    • 2005
  • Recently, because of environment, cost, supply and demand factors, though applying sea-sand as horizontal drains is getting difficult that usage of Gravel has been growing in large size of construction sites, Study on engineering properties and behavior characteristics of Gravel stratum is not thoroughgoing enough. We have applied Gravel Mat as the horizontal drains in O O construction site. We also conducted several field tests such as Material property test, Geosynthetics damage test with Repeated load, Discharge capacity test performed by inflow of upper soil and In-situ PBD Penetration test to review the application of Gravel Mat. Test results show that Gravel Mat is not only advantageous in Trafficability and Water drainage by Consolidation due to its great Internal friction angle and Permeability, but also easy to penetrate with Mandrel and has great discharge capacity and guarantee of the stability against geosynthetics damage at the same time. With these benefits Gravel Mat shows great application in fields.

  • PDF

Effectiveness of Reinforcement by Geogrid & Pile in Soft Clay (지오그리드와 말뚝에 의한 연약지반 보강효과)

  • 신은철;이상혁;이명원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.61-69
    • /
    • 2000
  • It is not easy to find a good soil condition due to the shortage of suitable land for construction work. The earth structure and buildings can be constructed over the soft soil. The soft soil must be treated either using the reinforcement element or dewatering. Most of land reclamation projects are being implemented along the south coast or west coast of the Korean Peninsula. The soils in these areas are covered with the soft marine clay, so soil and site improvement is the most important things to do. Pile foundation at the bottom of embankment can be constructed either in the soft ground or in the soil contaminated area. The purpose of this research is to develop "geogrid-reinforced piled embankment method" to prevent the differential settlement and increase the bearing capacity of soil. In this study, the effectiveness of the geogrid-reinforcement was studied by varying the space between piles and reinforcement conditions. Also, the geotechnical engineering properties of the embankment material and foundation soil were determined through the laboratory tests as well as the field tests. As a result, the site that the pile-spacing S = 3b with geogrid reinforcement is the most effective to reduce the differential settlement and increase load bearing capacity.

  • PDF