• Title/Summary/Keyword: geostrophic current

Search Result 52, Processing Time 0.022 seconds

A Simple Model for Separation of East Korean Warm Current and Formation of North Korean Cold Current (동한난류의 이안 및 북한한류의 형성에 관한 단순모델)

  • SEUNG, YOUNG HO
    • 한국해양학회지
    • /
    • v.27 no.3
    • /
    • pp.189-196
    • /
    • 1992
  • A simple quasi-geostrophic model is considered to explain the separation of the East Korean Warm Current(EKWC) and formation of the North Korean Cold Current(NKCC). In this model, the circulation is driven by inflow-outflow condition and modified by local forcing. The solution is decomposed into inflow-outflow and local modes which describe only the effects of inflow-outflow condition and local forcing, respectively. Results of analyses show that both the surface cooling and positive wind stress curl are favorable for the separation of EKWC and formation of NKCC. This fact is compatible with the present knowledge about heat flux and wind stress field over the Sea of Japan.

  • PDF

Physical Structure of Eddies in the Southwestern East Sea (동해남서해역 와류의 물리적구조)

  • 이흥재;변상경
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.170-183
    • /
    • 1995
  • Eddies and surface current field in the southwestern part of the East Sea were investigated using satellite-tracked drifters, CTD, and ADCP from November 1992 to September 1993. Trajectories of surface drifters provided information for the first time on the meandering motion of the East Korean Warm Current in the Ullung Basin (referred as UB) and clearly indicated the existence of cyclonic and anticyclonic eddies of various scales. Anticyclonic eddies persisting for a relatively long period were observed in UB and the southwestern corner of the Northern (Japan) Basin (SNB), while a cyclonic eddy was found in the coastal area between Sokcho and Donghae during the summer. Analysis shows that the eddy in UB behaved as a stationary eddy at least during the observation period and the cyclonic eddy was closely related to the existence of a cold water mass. The anticyclonic eddy in SNB was larger than that in UB, but much elongated in shape. The eddy in UB is characteristic of major and minor axes of about 120 and 70 km, revolution period of 13.6 days, mean swirl velocity of about 24 cm/s, and mean eddy kinetic energy of 392 cm$\^$2//s$\^$2/. The eddy in SNB is described as follows; major and minor axes of 168 and 86 km, period of 14.9 days, mean swirl velocity of 29 cm/s and mean eddy kinetic energy of 629 cm$\^$2//s$\^$2/. The mean translational speed is about 3 cm/s for both eddies. The agreement of the surface current pattern in UB observed by ADCP with the geostrophic flow pattern may suggest that the eddy in UB was nearly in geostrophic balance. The eddy was found to be strongly bottom-controlled.

  • PDF

Application of SeaWiFS Chlorophyll-a Ocean Color Image for estimating Sea Surface Currents from Geostationary Ocean Color Imagery (GOCI) data (정지궤도 해색탑재체(GOCI) 표층유속 추정을 위한 SeaWiFS 해색자료의 응용)

  • Kim, Eung;Ro, Young-Jae;Jeon, Dong-Chull
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.209-220
    • /
    • 2010
  • One of the most difficult tasks in measuring oceanic conditions is to produce oceanic current information. In efforts to overcome the difficulties, various attempts have been carried out to estimate the speed and direction of ocean currents by utilizing sequential satellite images. In this study, we have estimated sea surface current vectors to the south of the Korean Peninsula, based on the maximum cross-correlation method by using sequential ocean color images of SeaWiFS chlorophyll-a. Comparison of surface current vectors estimated by this method with the geostrophic current vectors estimated from satellite altimeter data and in-situ ADCP measurements are good in that current speeds are underestimated by about 15% and current directions are show differences of about $36^{\circ}$ compared with previous results. The technique of estimating current vectors based on maximum cross-correlation applied on sequential images of SeaWiFS is promising for the future application of GOCI data for the ocean studies.

Mean Flow and Variability at the Upper Portion of the East Sea Proper Water in the southwestern East Sea with APEX Floats

  • Lee, Ho-Man;Kim, Tae-Hee;Kim, Ju-Ho;Youn, Yong-Hoon
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.145-150
    • /
    • 2003
  • 16 APEX floats, autonomous profiling floats deployed as part of the Array for Real-time Geostrophic Oceanography (ARGO) program, are used to understand the currents at 800 m underwater in the southwestern East Sea. The flow penetrates into the Ulleung basin (UB) through two paths: an extension of the southward flowing the North Korean Cold Water along the east coast of Korea and between Ulleung Island and Dok island. Flows at 800 m are observed range 0.2 to 4.29 cm/sec and the variability in the north in the DB is stronger than that in the south. The eddy kinetic energy is found a few $cm^{2}$ $S^{-2}$. In the UB, cyclonic flows from 0.3 - 1.6 cm/see are observed with the bottom topography.

  • PDF

The Warm Eddy in the East Korean Bight

  • Shin, Chang-Woong;Kim, Cheol-Soo;Byun, Sang-Kyung
    • Ocean and Polar Research
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • Sea surface temperature derived from infrared images of NOAA satellites showed a warm eddy in the East Korean Bight(EKB) or Donghan Man during the winter 1997${\sim}$2000. To describe the warm eddy in the EKB, hydrographic data collected in 1934 and 1936 were also analyzed. The center of the warm eddy was located at about $39^{\circ}N$ and $129^{\circ}E$. The temperature and salinity of the eddy was about $4.0^{\circ}C$ and 34.0 psu, respectively, at 100m depth. The eddy rotated anticyclonically with a geostrophic current speed of about 20 cm/s. The mean state calculated from the data of 1922${\sim}$1960 showed the existence of a warm eddy over the EKB in winter. The eddy persists until late spring, and disappears from the previous location in summertime, only to be seen again in autumn.

  • PDF

The Fluctuation Characteristics of the Water Mass and the Current Structure of the Southeastern Region of The East Sea

  • Lee Chung Il;Cho Kyu Dae
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.2
    • /
    • pp.97-110
    • /
    • 2000
  • To investigate characteristics of water masses and current structures around Noto Peninsula located in south-east coastal region of the East Sea, observation results of CREAMS (Circulations Research of the East Asian Marginal Seas) cruise and data report of oceanographic observation (Japan Meteorological Agency) in June, 1995 and 1996 were used. Water mass showing characteristics of Tsushima Warm Current (TWC) exists over the continental shelf. The depth is shallower than 200m and its width and thickness are 190km and 200m, respectively. Minimum level of dissolved oxygen occurred at the layers of maximum salinity. In the current structure, a noteworthy phenomenon is that the positions of the high-salinity water (more than 34.6 psu) match well with the distributions of the southwestward flow. In June of 1995 and June of 1996, a southwestward flow were separated into two parts along line C and line G. Current directions derived from the temperature and salinity match well with the distributions of the geostrophic currents in the vertical sections. The isothermal lines and the isohaline, which exist horizontally along the coastal area of the Japan, change abruptly at the frontal area of the Noto Peninsula, then turn toward the center of the East Sea. The dynamic depth anomalies centering around the region far northwest of the Noto Peninsula were relatively high, compared to those of other regions. The isopycnic surface (sigma-t, 25.8) existed near the surface in the central part of the East Sea, but, at the depth of 100m, the isopycnic surface was found in the coastal waters.

  • PDF

Seasonal Variation of Water Mass Distributions in the Eastern Yellow Sea and the Yellow Sea Warm Current

  • Pang, Ig-Chan;Hyun, Kyung-Hoon
    • Journal of the korean society of oceanography
    • /
    • v.33 no.3
    • /
    • pp.41-52
    • /
    • 1998
  • A seasonal circulation pattern in the eastern Yellow Sea (EYS) is suggested from the water mass analysis and geostrophic calculation using the hydrographic data collected by National Fisheries Research and Development Institute during the years of 1970 to 1990. This research focuses on the presence of inflow of warm (and saline) waters into EYS in summer. EYS is divided into two regions in this paper: the west coast of Korea (WCK) and the central Yellow Sea (CYS). In CYS, waters are linked with warm waters near Cheju Island in winter, but with cold waters from the north in summer (in the lower layer). It is not simple to say about WCK because of the influences of freshwater input and tidal mixing. Nevertheless, water mass analysis reveals that along WCK, waters have the major mixing ratios (40-60%) of warm waters in summer, while the dominant mixing ratios (50-90%) of cold waters in winter. Such a seasonal change of water mass distribution can be explained only by seasonal circulation. In winter, warm waters flow northward into CYS and cold waters flow southward along WCK. In summer, warm waters flow northward along WCK and cold waters flow southward into CYS. This circulation pattern is supported by both statistical analysis and dynamic depth topography. Accordingly, Yellow Sea Warm Current may be defined as the inflow of warm waters to CYS in winter and to WCK in summer.

  • PDF

Study on Tidal Current Simulation and its Application to Speed Trial around Straits of Korea (대한해협에서의 선박의 속력 시운전시 조류 예측에 관한 연구)

  • Lee, Hee-Su;Choi, Dai-Hyun;Park, Jong-Chun;Jeong, Se-Min;Kim, Young-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.23-29
    • /
    • 2010
  • Korean shipbuilding companies have sometimes carried out sea trials to measure a vessel's speed performance around the western channel of the Straits of Korea, where the flow fields are very complicated because of the effect of various flows such as sea, tidal, geostrophic, and wind-driven currents. Because these flows seem to present significant interference to a ship, the numerical reproduction of the flow-fields in the vicinity of the target sites could provide a better understanding of the sea environments while performing sea trials. In this study, we used the MEC ocean model to simulate the tidal currents around Tsushima Island and compared the simulated tidal amplitudes and currents with the measurements of Teague et al. (2001). The tidal amplitudes of the present simulation results agreed well with the observations. Based on the numerical simulation, the optimal direction and proper sites for a speed trial are described.

Variability of Sea Levels at Mukho and Ullungdo off the East Coast of Korea (한국 동해 묵호와 울릉도의 해수면의 변화)

  • LEE Jae-Chul;KIM Soon-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.6
    • /
    • pp.413-427
    • /
    • 1991
  • Variability of sea levels at Mukho and Ullungdo and sea level difference(SLD) associated with current is investigated. Time series of adjusted sea levels at both places have very similar pattern of change. Two components appear to contribute to the correlation between sea level and SLD. Low frequency thermosteric effect causes the sea level to rise and fall at the same time. Geostrophic effect of major currents is responsible for the sea level change in opposite ways at both sides. Two contributions have a cancelling effect for sea level change at Mukho while they are additive at Ullungdo. Characteristics of time series in frequency domain are divided into two parts with respect to 0.01 cycles per day(cpd). At Mukho, the cancelling effect yields small values of coherence for low-frequency bands whereas the dominant geostrophic influence may be responsible for the phase relations of about $\pm 180^{\circ}$ between sea level and SLD at higher frequency. Bimonthly dynamic height difference(DHD) between Mukho and Ullungdo is very significantly correlated with SLD. This result suggests that DHD thus the average velocity of current through the Mukho-Ullungdo section can successfully be diagnosed by the sea level records at both locations. For the annual variations, maximum SLD occurs at Mukho-Ullungdo section about 40 days later than the Korea Strait.

  • PDF

Longitudinal Distribution of Zooplankton at 10.5°N in the Northeastern Pacific (북동태평양 북위 10.5°에서 동물플랑크톤의 경도별 분포 특성)

  • Kang, Jung-Hoon;Cho, Kyu-Hee;Son, Ju-Won;Kim, Woong-Seo
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.283-295
    • /
    • 2007
  • We investigated the longitudinal variations in zooplankton abundances and their related physicochemical properties at nine stations located between $136^{\circ}W$ and $128^{\circ}W$ at $10.5^{\circ}N$ in the northeastern Pacific in summer 2004. Temperature, salinity, inorganic nutrients, chlorophyll-a (hereafter chl-a) and zooplankton ($>200\;{\mu}m$) were sampled within the depth from the surface to 200 m depth at $1^{\circ}$ longitude intervals. Zooplankton($>200\;{\mu}m$) samples were vertically collected at two depth intervals from surface to 200 m, consisting of surface mixed and lower layers (thermocline$\sim$200 m). Longitudinal distributional pattern of hydrological parameters (especially salinity) was physically influenced by the intensity of westward geostrophic current passage relating to the NEC (North Equatorial Current). Data from the longitudinal survey showed clear zonal distributions in the hydrological parameters(temperature, salinity and nutrients). However, spatial patterns of the chl-a concentrations and zooplankton abundances were mostly independent of the zonal distributions of hydrological parameters. The two peaks of zooplankton abundance in the surface mixed layer were characterized by different controlling factors such as bottom-up control from nutrients to zooplankton ($129^{\circ}W$) and accumulation by increment of friction force and taxonomic interrelationship ($133^{\circ}$ and $134^{\circ}W$). Divergence-related upwelling caused introduction of nutrients into surface waters leading to the increment of chl-a concentration and zooplankton abundances ($129^{\circ}W$). Increased friction force in relation to reduced flow rates of geostrophic currents caused accumulation of zooplankton drifting from eastern stations of study area($133^{\circ}$ and $134^{\circ}W$). Besides, high correlation between immature copepods and carnivorous groups such as chaetognaths and cyclopoids also possibly contributed to the enhanced total abundance of zooplankton in the surface mixed layer (p<0.05). Zooplankton community was divided into three groups (A, B, C) which consecutively included the eastern peak of zooplankton($129^{\circ}W$), the western peak($133^{\circ}$ and $134^{\circ}W$) and high nutrient but low chl-a concentration and zooplankton abundance ($136^{\circ}W$). Moreover, Group B corresponded to the westward movement of low saline waters(<33.6 psu) from 128 to $132^{\circ}W$. In summary, longitudinal distributions of zooplankton community was characterized by three different controlling factors: bottom-up control ($129^{\circ}W$), accumulation by increased friction force and relationships among zooplankton groups ($133^{\circ}$ and $134^{\circ}W$), and mismatch between hydrological parameters and zooplankton in the high nutrient low chlorophyll area ($136^{\circ}W$) during the study period.