• Title/Summary/Keyword: geostatistical method

Search Result 93, Processing Time 0.028 seconds

Geostatistical algorithm for evaluation of primary and secondary roughness

  • Nasab, Hojat;Karimi-Nasab, Saeed;Jalalifar, Hossein
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.359-370
    • /
    • 2021
  • Joint roughness is combination of primary and secondary roughness. Ordinarily primary roughness is a geostatistical part of a joint surface that has a periodic nature but secondary roughness or unevenness is a statistical part of that which have a random nature. Using roughness generating algorithms is a useful method for evaluation of joint roughness. In this paper after determining geostatistical parameters of the joint profile, were presented two roughness generating algorithms using Mount-Carlo method for evaluation of primary (GJRGAP) and secondary (GJRGAS) roughness. These based on geostatistical parameters (range and sill) and statistical parameters (standard deviation of asperities height, SDH, and standard deviation of asperities angle, SDA) for generation two-dimensional joint roughness profiles. In this study different geostatistical regions were defined depending on the range and SDH. As SDH increases, the height of the generated asperities increases and asperities become sharper and at a specific range (a specific curve) relation between SDH and SDA is linear. As the range in GJRGAP becomes larger (the base of the asperities) the shape of asperities becomes flatter. The results illustrate that joint profiles have larger SDA with increase of SDH and decrease of range. Consequencely increase of SDA leads to joint roughness parameters such Z2, Z3 and RP increases. The results showed that secondary roughness or unevenness has a great influence on roughness values. In general, it can be concluded that the shape and size of asperities are appropriate parameters to approach the field scale from the laboratory scale.

Estimation of geomechanical parameters of tunnel route using geostatistical methods

  • Aalianvari, Ali;Soltani-Mohammadi, Saeed;Rahemi, Zeynab
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.453-458
    • /
    • 2018
  • Geomechanical parameters are important factors for engineering projects during design, construction and support stages of tunnel and dam projects. Geostatistical estimation methods are known as one of the most significant approach at estimation of Geomechanical parameters. In this study, Azad dam headrace tunnel is chosen to estimate Geomechanical parameters such as Rock Quality Designation (RQD) and uniaxial compressive strength (UCS) by ordinary kriging as a geostatistical method. Also Rock Mass Rating (RMR) distribution is presented along the tunnel. Main aim in employment of geostatistical methods is estimation of points that unsampled by sampled points.To estimation of parameters, initially data are transformed to Gaussian distribution, next structural data analysis is completed, and then ordinary kriging is applied. At end, specified distribution maps for each parameter are presented. Results from the geostatistical estimation method and actual data have been compared. Results show that, the estimated parameters with this method are very close to the actual parameters. Regarding to the reduction of costs and time consuming, this method can use to geomechanical estimation.

Three-dimensional geostatistical modeling of subsurface stratification and SPT-N Value at dam site in South Korea

  • Mingi Kim;Choong-Ki Chung;Joung-Woo Han;Han-Saem Kim
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.29-41
    • /
    • 2023
  • The 3D geospatial modeling of geotechnical information can aid in understanding the geotechnical characteristic values of the continuous subsurface at construction sites. In this study, a geostatistical optimization model for the three-dimensional (3D) mapping of subsurface stratification and the SPT-N value based on a trial-and-error rule was developed and applied to a dam emergency spillway site in South Korea. Geospatial database development for a geotechnical investigation, reconstitution of the target grid volume, and detection of outliers in the borehole dataset were implemented prior to the 3D modeling. For the site-specific subsurface stratification of the engineering geo-layer, we developed an integration method for the borehole and geophysical survey datasets based on the geostatistical optimization procedure of ordinary kriging and sequential Gaussian simulation (SGS) by comparing their cross-validation-based prediction residuals. We also developed an optimization technique based on SGS for estimating the 3D geometry of the SPT-N value. This method involves quantitatively testing the reliability of SGS and selecting the realizations with a high estimation accuracy. Boring tests were performed for validation, and the proposed method yielded more accurate prediction results and reproduced the spatial distribution of geotechnical information more effectively than the conventional geostatistical approach.

Feasibility Test for Hydraulic Conductivity Characterization of Small Basin-Scale Aquifers Based on Geostatistical Evolution Strategy Using Naturally Imposed Hydraulic Stress (자연 수리자극을 이용한 소유역 규모 대수층 수리전도도 특성화: 지구통계 진화전략 역산해석 기법의 적용 가능성 시험)

  • Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.87-97
    • /
    • 2020
  • In this study, the applicability of the geostatistical evolution strategy as an inverse analysis method of estimating hydraulic properties of small-scale basin was tested. The geostatistical evolution strategy is a type of data assimilation method that can effectively estimate aquifer hydraulic conductivity by combining a global optimization model of the evolution strategy and a local optimization model of the ensemble Kalman filtering. In the applicability test, the geometry, hydraulic boundary conditions, and the distribution of groundwater monitoring wells of Hanlim-Eup were employed. On the other hand, a synthetic hydraulic conductivity distribution was generated and used as the reference property for ease of estimation quality assessment. In the estimations, two different cases were tested where, in Case I, both groundwater levels and hydraulic conductivity measurements were assumed to be available, and only the groundwater levels were available, in Case II. In both cases, the reference and estimated hydraulic conductivity fields were found to show reasonable similarity, even though the prior information for estimation was not accurate. The ability to estimate hydraulic conductivity without accurate prior information suggests that this method can be used effectively to estimate mathematical properties in real-world cases, many of which little prior information is available for the aquifer conditions.

Uncertainty Analysis of Soft Ground Using Geostatistical Kriging Method (지구통계학 크리깅 기법을 이용한 연약지반의 불확실성 분석)

  • Yoon Gil-Lim;Lee Kang-Woon;Chae Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.5-17
    • /
    • 2005
  • Spatial uncertainty of Busan marine clay ground, which commonly occurs during site investigation testing, data analysis and transformation modeling, has been described. In this paper geotechnical uncertainty of shear strength indicator $N_k$ has been quantified in both horizontal direction and vertical direction using geostatistical Kriging method. Most of soil data used are from 25 boring tests, 75 laboratory tests, 124 field vane tests and 25 cone penetration tests (CPT). CPT-$N_k$ data for undrained shear strength determination, which are the most important properties in geotechnical design stages, have been analysed. Comparison between cone factor from conventional CPT-based method and that of geostatistical method shows that geostatistical Kriging method is an ideal tool to quantify the spatial variability of uncertainty from self-correlation of soil property of interest, and can be recommended to identify the spatial distribution of consolidation .md shear strength of soils at any sites concerned.

Integrated Analysis of Gravity and MT data by Geostatistical Approach (지구통계학적 방법을 이용한 포텐셜 자료와 MT 자료의 복합 해석 연구)

  • Park, Gye-Soon;Oh, Seok-Hoon;Lee, Heui-Soon;Kwon, Byung-Doo;Yang, Jun-Mo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.42-47
    • /
    • 2007
  • We have studied feasibility of the geostatistical approach to enhance the result of analysis of the sparsely obtained MT(Magnetotelluric) data by combining with gravity data. We have attempted to use geostatistics for integrating the MT data along with gravity data. To evaluate the feasibility of this approach, we have studied about interrelation between geological boundary and density distribution, and corrected density distribution for conversion to more sensitive to geological boundary by minimization of difference between z-directional variogram values of resistivity distribution obtained MT inversion and density distributions. Then, this method has been tested on model and field data. In model test, the results obtained were good agreement with real model. And in a real field data, the result of analysis demonstrate convincingly that our geostatistical approach is effective.

  • PDF

Prediction of Heterogeneous Hydraulic Conductivity and Contaminant Transport for the Landfill on Marine Clay (비균질성을 고려한 해성점토매립장의 수리전도도 추정과 오염이동특성)

  • 장연수;정상용
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.85-100
    • /
    • 1997
  • The heterogeneity of hydraulic conductivity of Metropolitan Waste Landfill is analized by using geostatistical methods and the contaminant transport analysis is performed by using heterogeneous hydraulic conductivity. The hydraulic conductivity data are obtained from laboratory pressurized permeability tests and the insitu, Slug test. Geostatistical methods used in this analysis are Ordinary Kriging and conditional simulation. It is concluded that the heterogeneities of hydraulic conductivity obtained from conditional simulation are greater than those from Ordinary Kriging analysis. The movement of the contaminant on the hydraulic conductivity with greater heterogeneity obtained from conditional simulation is faster than that observed in Ordinary Kriging analysis.

  • PDF

Evaluation of the Population Distribution Using GIS-Based Geostatistical Analysis in Mosul City

  • Ali, Sabah Hussein;Mustafa, Faten Azeez
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.83-92
    • /
    • 2020
  • The purpose of this work was to apply geographical information system (GIS) for geostatistical analyzing by selecting a semi-variogram model to quantify the spatial correlation of the population distribution with residential neighborhoods in the both sides of Mosul city. Two hundred and sixty-eight sample sites in 240 ㎢ are adopted. After determining the population distribution with respect to neighborhoods, data were inserted to ArcGIS10.3 software. Afterward, the datasets was subjected to the semi-variogram model using ordinary kriging interpolation. The results obtained from interpolation method showed that among the various models, Spherical model gives best fit of the data by cross-validation. The kriging prediction map obtained by this study, shows a particular spatial dependence of the population distribution with the neighborhoods. The results obtained from interpolation method also indicates an unbalanced population distribution, as there is no balance between the size of the population neighborhoods and their share of the size of the population, where the results showed that the right side is more densely populated because of the small area of residential homes which occupied by more than one family, as well as the right side is concentrated in economic and social activities.

A STATISTICAL ANALYSIS METHOD FOR ESTIMATING GROUNDWATER CONTAMINANT CONCENTRATION

  • LEE, YOUNG CHEON
    • Honam Mathematical Journal
    • /
    • v.26 no.1
    • /
    • pp.87-103
    • /
    • 2004
  • A practical estimation method for groundwater contaminant concentration is introduced. Using geostatistical techniques and symmetry, experimental variograms show significant improved correlation compared with those from conventional techniques. Numrical experiments are performed using a field data set.

  • PDF

Interpretation of Vertical Electrical Sounding Data in Saltwater Intrusion Area using Geostatistical Method (지구통계분석을 이용한 해수침투지역에서의 전기비저항탐사 자료 해석)

  • Song Sung-Ho;Lee Gyu-Sang;Yong Hwan-Ho;Kim Jin-Sung;Seong Baek-Uk;Woo Myung-Ha
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.59-64
    • /
    • 2005
  • Although experimental analysis for groundwater sample at wells located systematically are very effective to delineate seawater intrusion region at coastal area, this method is restricted in few wells and time. We have conducted electrical resistivity sounding at 30 points in the study areas to analyze the region of seawater intrusion and found the boundary between salt wedge and fresh water lens from the analysis results of geostatistical method using variogram for one-dimensional inversion results. The methodology adopted in this study would be useful for finding the seawater intrusion region and evaluating quantitatively.

  • PDF